OPC Unified Architecture Specification
Part 4: Services
1 Scope

This specification defines the OPC Unified Architecture (OPC UA) Services. The Services described are the collection of abstract Remote Procedure Calls (RPC) that are implemented by OPC UA Servers and called by OPC UA Clients. All interactions between OPC UA Clients and Servers occur via these Services. The defined Services are considered abstract because no particular RPC mechanism for implementation is defined in this Part. Part 6 specifies one or more concrete mappings supported for implementation. For example, one mapping in Part 6 is to XML Web Services. In that case the Services described in this Part appear as the Web service methods in the WSDL contract.

Not all OPC UA Servers will need to implement all of the defined Services. Part 7 defines the Profiles that dictate which Services need to be implemented in order to be compliant with a particular Profile.
2 Reference documents

Part 1: IEC 62541-1 OPC UA Specification: Part 1 – Overview and Concepts

Part 2: IEC 62541-2 OPC UA Specification: Part 2 – Security Model

Part 3: IEC 62541-3 OPC UA Specification: Part 3 – Address Space Model

Part 5: IEC 62541-5 OPC UA Specification: Part 5 – Information Model

Part 6: IEC 62541-6 OPC UA Specification: Part 6 – Mappings

Part 7: IEC 62541-7 OPC UA Specification: Part 7 – Profiles

Part 8: IEC 62541-8 OPC UA Specification: Part 8 – Data Access

Part 11: IEC 62541-11 OPC UA Specification: Part 11 – Historical Access

Part 12: IEC 62541-12 OPC UA Specification: Part 12 – Discovery
Part 13: IEC 62541-13 OPC UA Specification: Part 13 – Aggregates

ISO/IEC 7498: Information Processing Systems - OSI Reference Model

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

3 Terms, definitions, and conventions

3.1 OPC UA Part 1 terms

The following terms defined in Part 1 apply.

1) AddressSpace

2) Attribute

3) Certificate

4) Client

5) Communication Stack

6) Event

7) EventNotifier

8) Message

9) MonitoredItem

10) Node

11) NodeClass

12) Notification

13) NotificationMessage

14) Object

15) ObjectType

16) Profile

17) Reference

18) ReferenceType

19) Server

20) Service

21) Service Set

22) Session

23) Subscription

24) Variable

25) View

3.2 OPC UA Part 2 terms

The following terms defined in Part 2 apply.

26) Authentication

27) Authorization

28) Confidentiality

29) Integrity

30) Nonce

31) OPC UA Application

32) SecureChannel

33) SecurityToken

34) SessionKeySet

35) PrivateKey

36) PublicKey

37) X.509 Certificate

3.3 OPC UA Part 3 terms

The following terms defined in Part 3 apply.

1) EventType

2) HierarchicalReference

3) InstanceDeclaration

4) ModellingRule

5) Property

6) SourceNode

7) TargetNode

8) TypeDefinitionNode

9) VariableType

3.4 OPC UA Services terms

3.4.1 Deadband

a permitted range for value changes that will not trigger a data change Notification.
NOTE: Deadband can be applied as a filter when subscribing to Variables and is used to keep noisy signals from updating the Client unnecessarily. This specification defines AbsoluteDeadband as a common filter. Part 8 defines an additional Deadband filter.

3.4.2 Endpoint

a physical address available on a network that allows Clients to access one or more Services provided by a Server.

NOTE: Each Server may have multiple Endpoints. The address of an Endpoint shall include a HostName.

3.4.3 Gateway Server

a Server that acts as an intermediary for one or more Servers.

NOTE: Gateway Servers may be deployed to limit external access, provide protocol conversion or to provide features which the underlying Servers do not support.
3.4.4 HostName

a unique identifier for a machine on a network.

NOTE: This identifier shall be unique within a local network, however, it may also be globally unique.
3.4.5 Security Token
an identifier for a cryptographic key set.

NOTE: All Security Tokens belong to a security context which is in case of OPC UA the Secure Channel.
3.4.6 ServerUri

a globally unique identifier for a Server application instance.

NOTE: The ServerUri may be a GUID generated automatically during install or it could be a unique URL assigned by the administrator.
3.4.7 SoftwareCertificate

A digital certificate for a software product, which can be installed on several hosts to describe the capabilities of the software product.
NOTE: Different installations of one software product could have the same software certificate.

3.5 Abbreviations and symbols

API
Application Programming Interface

BNF
Backus-Naur Form

CA
Certificate Authority

CRL
Certificate Revocation List

CTL
Certificate Trust List

DA
Data Access

UA
Unified Architecture

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

3.6 Conventions for Service definitions

OPC UA Services contain parameters that are conveyed between the Client and the Server. The OPC UA Service specifications use tables to describe Service parameters, as shown in Table 1. Parameters are organised in this table into request parameters and response parameters.

Table 1 – Service Definition Table

	Name
	Type
	Description

	Request
	
	Defines the request parameters of the Service

	
Simple Parameter Name
	
	Description of this parameter

	
Constructed Parameter Name
	
	Description of the constructed parameter

	

Component Parameter Name
	
	Description of the component parameter

	
	
	

	Response
	
	Defines the response parameters of the Service

	
	
	

The Name, Type and Description columns contain the name, data type and description of each parameter. All parameters are mandatory, although some may be unused under certain circumstances. The description column specifies the value to be supplied when a parameter is unused.

Two types of parameters are defined in these tables, simple and constructed. Simple parameters have a simple data type, such as Boolean or String.

Constructed parameters are composed of two or more component parameters, which can be simple or constructed. Component parameter names are indented below the constructed parameter name.

The data types used in these tables may be base types, common types to multiple Services or Service-specific types. Base data types are defined in Part 3. The base types used in Services are listed in Table 2. Data types that are common to multiple Services are defined in Clause 7. Data types that are Service-specific are defined in the parameter table of the Service.
Table 2 – Parameter Types defined in Part 3
	Parameter Type

	BaseDataType

	NodeId

	QualifiedName

	LocaleId

	Boolean

	Byte

	ByteString

	Double

	Guid

	Int32

	String

	UInt16

	UInt32

	UInteger

	UtcTime

	XmlElement

	Duration

The term Services used in this Part is consistent with the definition provided by ISO/IEC 7498. The parameters of the Request and Indication service primitives are represented in Table 1 as Request parameters. Likewise, the parameters of the Response and Confirmation service primitives are represented in Table 1 as Response parameters. All request and response parameters are conveyed between the sender and receiver without change. Therefore, separate columns for request, indication, response, and confirmation parameter values are not needed and have been intentionally omitted to improve readability

4 Overview

4.1 Service Set model

This clause specifies the OPC UA Services. The OPC UA Service definitions are abstract descriptions and do not represent a specification for implementation. The mapping between the abstract descriptions and the Communication Stack derived from these Services are defined in Part 6. In the case of an implementation as web services, the OPC UA Services correspond to the web service and an OPC UA Service corresponds to an operation of the web service.

These Services are organised into Service Sets. Each Service Set defines a set of related Services. The organisation in Service Sets is a logical grouping used in the specification and is not used in the implementation.
The Discovery Service Set, illustrated in Figure 1, defines Services that allow a Client to discover the Endpoints implemented by a Server and to read the security configuration for each of those Endpoints

[image: image1.wmf]

Server

Discovery

S

ervices

Server Description

Endpoint Description

Figure 1 – Discovery Service Set

The SecureChannel Service Set, illustrated in Figure 2, defines Services that allow a Client to establish a communication channel to ensure the Confidentiality and Integrity of Messages exchanged with the Server.

[image: image2.wmf]

Server

Secure

Channel

services

Security Policy

Security Token

Figure 2 – SecureChannel Service Set

The Session Service Set, illustrated in Figure 3, defines Services that allow the Client to authenticate the User it is acting on behalf of and to manage Sessions.

[image: image3.wmf]

Server

Session

services

Session

Figure 3 – Session Service Set

The NodeManagement Service Set, illustrated in Figure 4, defines Services that allow the Client to add, modify and delete Nodes in the AddressSpace.

[image: image4.wmf]

OPC UA

Server

NodeM

anagement

services

OPC UA

A

ddress

Space

Node

Node

Node

Node

Node

Node

Node

Node

Node

Figure 4 – NodeManagement Service Set

The View Service Set, illustrated in Figure 5, defines Services that allow Clients to browse through the AddressSpace or subsets of the AddressSpace called Views. The Query Service Set allows Clients to get a subset of data from the AddressSpace or the View.

[image: image5.wmf]

OPC UA

A

ddress

Space

OPC UA

Server

View

services

Node

Node

Node

Node

Node

Node

Node

Node

Node

V

iew

Query

services

Figure 5 – View Service Set

The Attribute Service Set is illustrated in Figure 6. It defines Services that allow Clients to read and write Attributes of Nodes, including their historical values. Since the value of a Variable is modelled as an Attribute, these Services allow Clients to read and write the values of Variables.

[image: image6.wmf]

OPC UA

Server

OPC UA A

ddressSpace

Object

Other Node Types

Attributes

Attribute

services

Attributes

Variable

s

Attributes

Figure 6 – Attribute Service Set

The Method Service Set is illustrated in Figure 7. It defines Services that allow Clients to call methods. Methods run to completion when called. They may be called with method-specific input parameters and may return method-specific output parameters.

[image: image7.wmf]

OPC UA

Server

OPC UA A

ddress Space

Call

service

Variables

Method

s

___()

___()

Object

 Node

Figure 7 – Method Service Set

The MonitoredItem Service Set and the Subscription Service Set, illustrated in Figure 8, are used together to subscribe to Nodes in the OPC UA AddressSpace.

The MonitoredItem Service Set defines Services that allow Clients to create, modify, and delete MonitoredItems used to monitor Attributes for value changes and Objects for Events.

These Notifications are queued for transfer to the Client by Subscriptions.

The Subscription Service Set defines Services that allow Clients to create, modify and delete Subscriptions. Subscriptions send Notifications generated by MonitoredItems to the Client. Subscription Services also provide for Client recovery from missed Messages and communication failures.

[image: image8.wmf]

OPC UA

Server

Subscription

 services

MonitoredItem

 services

Monitored

Item

Subscription

Node

Attributes

OPC UA

A

ddress

Space

Events

Figure 8 – MonitoredItem and Subscription Service Sets

4.2 Request/response Service procedures

Request/response Service procedures describe the processing of requests received by the Server, and the subsequent return of responses. The procedures begin with the requesting Client submitting a Service request Message to the Server.

Upon receipt of the request, the Server processes the Message in two steps. In the first step, it attempts to decode and locate the Service to execute. The error handling for this step is specific to the communication technology used and is described in Part 6.

If it succeeds, then it attempts to access each operation identified in the request and perform the requested operation. For each operation in the request, it generates a separate success/failure code that it includes in a positive response Message along with any data that is to be returned.

To perform these operations, both the Client and the Server may make use of the API of a Communication Stack to construct and interpret Messages and to access the requested operation.

The implementation of each service request or response handling shall check that each service parameter lies within the specified range for that parameter.

5 Service Sets

5.1 General

This clause defines the OPC UA Service Sets and their Services. Clause 7 contains the definitions of common parameters used by these Services. 6.2 describes auditing requirements for all services.
Whether or not a Server supports a Service Set, or a Service within a Service Set, is defined by its Profile. Profiles are described in Part 7.

5.2 Service request and response header

Each Service request has a RequestHeader and each Service response has a ResponseHeader.

The RequestHeader structure is defined in 7.26 and contains common request parameters such as authenticationToken, timestamp and requestHandle.

The ResponseHeader structure is defined in 7.27 and contains common response parameters such as serviceResult and diagnosticInfo.

5.3 Service results

Service results are returned at two levels in OPC UA responses, one that indicates the status of the Service call, and the other that indicates the status of each operation requested by the Service.

Service results are defined via the StatusCode (see 7.33).

The status of the Service call is represented by the serviceResult contained in the ResponseHeader (see 7.27). The mechanism for returning this parameter is specific to the communication technology used to convey the Service response and is defined in Part 6.

The status of individual operations in a request is represented by individual StatusCodes.

The following cases define the use of these parameters.

a) A bad code is returned in serviceResult if the Service itself failed. In this case, a ServiceFault is returned. The ServiceFault is defined in 7.28.

b) The good code is returned in serviceResult if the Service fully or partially succeeded. In this case, other response parameters are returned. The Client shall always check the response parameters, especially all StatusCodes associated with each operation. These StatusCodes may indicate bad or uncertain results for one or more operations requested in the Service call.

All Services with arrays of operations in the request shall return a bad code in the serviceResult if the array is empty.

The Services define various specific StatusCodes and a Server shall use these specific StatusCodes as described in the Service. A Client should be able to handle these Service specific StatusCodes. In addition a Client shall expect other common StatusCodes defined in Table 165 and Table 166. Additional details for Client handling of specific StatusCodes may be defined in Part 7.
If the Server discovers, through some out-of-band mechanism that the application or user credentials used to create a Session or SecureChannel have been compromised, then the Server should immediately terminates all sessions and channels that use those credentials. In this case, the Service result code should be either Bad_IdentityTokenRejected or Bad_CertificateUntrusted.
Message parsing can fail due to syntax errors or if data contained within the message exceeds ranges supported by the receiver. When this happens messages shall be rejected by the receiver. If the receiver is a Server then it shall return a ServiceFault with result code of Bad_DecodingError or Bad_EncodingLimitsExceeded. If the receiver is the Client then the stack should report these errors to the Client application.

Many applications will place limits on the size of messages and/or data elements contained within these messages. For example, a Server may reject requests containing string values longer than a certain length. These limits are typically set by administrators and apply to all connections between a Client and a Server.

Clients that receive Bad_EncodingLimitsExceeded faults from the Server will likely have to reformulate their requests. The administrator may need to increase the limits for the Client if it receives a response from the Server with this fault.
In some cases, parsing errors are fatal and it is not possible to return a fault. For example, the incoming message could exceed the buffer capacity of the receiver. In these cases, these errors may be treated as a communication fault which requires the SecureChannel to be re-established (See 5.5).

The Client and Server reduce the chances of a fatal error by exchanging their message size limits in the CreateSession service. This will allow either party to avoid sending a message that causes a communication fault. The Server should return a Bad_ResponseTooLarge fault if a serialized response message exceeds the message size specified by the Client. Similarly, the Client stack should report a Bad_RequestTooLarge error to the application before sending a message that exceeds the Server’s limit.

Note that the message size limits only apply to the raw message body and do not include headers or the effect of applying any security. This means that a message body that is smaller than the specified maximum could still cause a fatal error.
5.4 Discovery Service Set

5.4.1 Overview

This Service Set defines Services used to discover the Endpoints implemented by a Server and to read the security configuration for those Endpoints. The Discovery Services are implemented by individual Servers and by dedicated Discovery Servers. Part 12 describes how to use the Discovery Services with dedicated Discovery Servers.
Every Server shall have a Discovery Endpoint that Clients can access without establishing a Session. This Endpoint may or may not be the same Session Endpoint that Clients use to establish a SecureChannel. Clients read the security information necessary to establish a SecureChannel by calling the GetEndpoints Service on the Discovery Endpoint.

In addition, Servers may register themselves with a well known Discovery Server using the RegisterServer service. Clients can later discover any registered Servers by calling the FindServers Service on the Discovery Server.
The complete discovery process is illustrated in Figure 9.

[image: image9.emf]GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Discovery

Server

FindServers()

ServerDescription[]

RegisterServer()

Discovery

Endpoint

Registration

Endpoint

Figure 9 – The Discovery Process

The URL for a Discovery Endpoint shall provide all of the information that the Client needs to connect to the Discovery Endpoint.

Once a Client retrieves the Endpoints, the Client can save this information and use it to connect directly to the Server again without going through the discovery process. If the Client finds that it cannot connect then the Server configuration may have changed and the Client needs to go through the discovery process again.

Discovery Endpoints shall not require any message security, but it may require transport layer security. In production systems, Administrators may disable discovery for security reasons and Clients shall rely on cached EndpointDescriptions. To provide support for systems with disabled Discovery Services Clients shall allow Administrators to manually update the EndpointDescriptions used to connect to a Server. Servers shall allow Administrators to disable the Discovery Endpoint.

A Client shall be careful when using the information returned from a Discovery Endpoint since it has no security. A Client does this by comparing the information returned from the Discovery Endpoint to the information returned in the CreateSession response. A Client shall verify that:

1) The HostName specified in the Server Certificate is the same as the HostName contained in the endpointUrl provided in the EndpointDescription.
2) The Server Certificate returned in CreateSession response is the same as the Certificate used to create the SecureChannel.

3) The EndpointDescriptions returned from the Discovery Endpoint are the same as the EndpointDescriptions returned in the CreateSession response.

If the Client detects that one of the above requirements are not fulfilled, the Client shall close the SecureChannel and report an error.

5.4.2 FindServers
5.4.2.1 Description

This Service returns the Servers known to a Server or Discovery Server. The behaviour of Discovery Servers is described in detail in Part 12.

The Client may reduce the number of results returned by specifying filter criteria. A Discovery Server returns an empty list if no Servers match the criteria specified by the client. The filter criteria supported by this Service are described in 5.4.2.2.

Every Server shall provide a Discovery Endpoint that supports this Service, however, the Server shall only return a single record that describes itself. Gateway Servers shall return a record for each Server that they provide access to plus (optionally) a record that allows the Gateway Server to be accessed as a an ordinary OPC UA Server.

Every Server shall have a globally unique identifier called the ServerUri. This identifier should be a fully qualified domain name, however, it may be a GUID or similar construct that ensures global uniqueness. The ServerUri returned by this Service shall be the same value that appears in index 0 of the ServerArray property (see Part 5).

Every Server shall also have a human readable identifier called the ServerName which is not necessarily globally unique. This identifier may be available in multiple locales.

A Server may have multiple HostNames. For this reason, the Client shall pass the URL it used to connect to the Endpoint to this Service. The implementation of this Service shall use this information to return responses that are accessible to the Client via the provided URL.

This Service shall not require any message security but it may require transport layer security.

Some Servers may be accessed via a Gateway Server and shall have a value specified for gatewayServerUri in their ApplicationDescription (See 7.1). The discoveryUrls provided in ApplicationDescription shall belong to the Gateway Server. Some Discovery Servers may return multiple records for the same Server if that Server can be accessed via multiple paths.

This Service can be used without security and it is therefore vulnerable to DOS attacks. A Server should minimize the amount of processing required to send the response for this Service. This can be achieved by preparing the result in advance.
5.4.2.2 Parameters

Table 3 defines the parameters for the Service.

Table 3 – FindServers Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters. The authenticationToken is always omitted.

The type RequestHeader is defined in 7.26.

	
endpointUrl
	String
	The network address that the Client used to access the Discovery Endpoint.

The Server uses this information for diagnostics and to determine what URLs to return in the response.

The Server should return a suitable default URL if it does not recognize the HostName in the URL.

	
localeIds []
	LocaleId
	List of locales to use.

The server should return the ServerName using one of locales specified. If the server supports more than one of the requested locales then the server shall use the locale that appears first in this list. If the server does not support any of the requested locales it chooses an appropriate default locale.

The server chooses an appropriate default locale if this list is empty.

	
serverUris []
	String
	List of servers to return.

All known servers are returned if the list is empty.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters.
The ResponseHeader type is defined in 7.27.

	
servers []
	ApplicationDescription
	List of Servers that meet criteria specified in the request.

This list is empty if no servers meet the criteria.

The ApplicationDescription type is defined in 7.1.

5.4.2.3 Service results

Common StatusCodes are defined in Table 165.
5.4.3 GetEndpoints

5.4.3.1 Description

This Service returns the Endpoints supported by a Server and all of the configuration information required to establish a SecureChannel and a Session.

This Service shall not require any message security but it may require transport layer security.
A Client may reduce the number of results returned by specifying filter criteria. The Server returns an empty list if no Endpoints match the criteria specified by the client. The filter criteria supported by this Service are described in 5.4.3.2.

A Server may support multiple security configurations for the same Endpoint. In this situation, the Server shall return separate EndpointDescription records for each available configuration. Clients should treat each of these configurations as distinct Endpoints even if the physical URL happens to be the same.

The security configuration for an Endpoint has four components:

Server Application Instance Certificate

38) Message Security Mode

39) Security Policy

40) Supported User Identity Tokens

The ApplicationInstanceCertificate is used to secure the OpenSecureChannel request (See 5.5.2). The MessageSecurityMode and the SecurityPolicy tell the Client how to secure messages sent via the SecureChannel. The UserIdentityTokens tell the client what type of user credentials shall be passed to the Server in the ActivateSession request (See 5.6.3).

Each EndpointDescription also specifies a URI for the Transport Profile that the Endpoint supports. The Transport Profiles specify information such as message encoding format and protocol version and are defined in Part 7. Clients shall fetch the Server’s SoftwareCertificates if they want to discover the complete list of Profiles supported by the Server (See 7.30).

Messages are secured by applying standard cryptography algorithms to the messages before they are sent over the network. The exact set of algorithms used depends on the SecurityPolicy for the Endpoint. Part 7 defines Profiles for common SecurityPolicies and assigns a unique URI to them. It is expected that applications have built in knowledge of the SecurityPolicies that they support, as a result, only the Profile URI for the SecurityPolicy is specified in the EndpointDescription. A Client cannot connect to an Endpoint that does not support a SecurityPolicy that it recognizes.
An EndpointDescription may specify that the message security mode is NONE. This configuration is not recommended unless the applications are communicating on a physically isolated network where the risk of intrusion is extremely small. If the message security is NONE then it is possible for Clients to deliberately or accidentally hijack Sessions created by other Clients.

A Server may have multiple HostNames. For this reason, the Client shall pass the URL it used to connect to the Endpoint to this Service. The implementation of this Service shall use this information to return responses that are accessible to the Client via the provided URL.

This Service can be used without security and it is therefore vulnerable to DOS attacks. A Server should minimize the amount of processing required to send the response for this Service. This can be achieved by preparing the result in advance.
Some of the EndpointDescriptions returned in a response shall specify the Endpoint information for a Gateway Server that can be used to access another Server. In these situations, the gatewayServerUri is specified in the EndpointDescription and all security checks used to verify Certificates shall use the gatewayServerUri (See 6.1.4) instead of the serverUri.

To connect to a Server via the gateway the Client shall first establish a SecureChannel with the Gateway Server. Then the Client shall call the CreateSession service and pass the serverUri specified in the EndpointDescription to the Gateway Server. The Gateway Server shall then connect to the underlying Server on behalf of the Client. The process of connecting to Server via a Gateway Server is illustrated in Figure 10.

[image: image10.emf]GetEndpoints()

CreateSecureChannel()

Client Server

EndpointDescription[]

Session

Endpoint

Gateway

Server

Discovery

Endpoint

CreateSession()

CreateSession()

Session

Endpoint

CreateSecureChannel()

Figure 10 – Using a Gateway Server
5.4.3.2 Parameters

Table 4 defines the parameters for the Service.

Table 4 – GetEndpoints Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters.
The authenticationToken is always omitted.

The type RequestHeader is defined in 7.26.

	
endpointUrl
	String
	The network address that the Client used to access the Discovery Endpoint.

The Server uses this information for diagnostics and to determine what URLs to return in the response.

The Server should return a suitable default URL if it does not recognize the HostName in the URL.

	
localeIds []
	LocaleId
	List of locales to use.

Specifies the locale to use when returning human readable strings.

This parameter is described in 5.4.2.2.

	
profileUris []
	String
	List of transport profiles that the returned Endpoints shall support.

All Endpoints are returned if the list is empty.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters.
The ResponseHeader type is defined in 7.27.

	
Endpoints []
	EndpointDescription
	List of Endpoints that meet criteria specified in the request.

This list is empty if no Endpoints meet the criteria.

The EndpointDescription type is defined in 7.9.

5.4.3.3 Service Results
Common StatusCodes are defined in Table 165.
5.4.4 RegisterServer

5.4.4.1 Description

This Service registers a Server with a Discovery Server. This Service will be called by a Server or a separate configuration utility. Clients will not use this Service.

A Server shall establish a SecureChannel with the Discovery Server before calling this Service. The SecureChannel is described in 5.5. The Administrator of the Server shall provide the Server with an EndpointDescription for the Discovery Server as part of the configuration process. Discovery Servers shall reject registrations if the serverUri provided does not match the applicationUri in Server Certificate used to create the SecureChannel.
A Server only provides its ServerUri and the URLs of the Discovery Endpoints to the Discovery Server. Clients shall use the GetEndpoints service to fetch the most up to date configuration information directly from the Server.

The Server shall provide a localized name for itself in all locales that it supports.

Servers shall be able to register themselves with a Discovery Server running on the same machine. The exact mechanisms depend on the Discovery Server implementation and are described in Part 6.

There are two types of Server applications: those which are manually launched and those that are automatically launched when a Client attempts to connect. The registration process that a Server shall use depends on which category it falls into.

The registration process for manually launched Servers is illustrated in Figure 11.

[image: image11.emf]Administrator

Discovery

Server

Server

Install()

RegisterServer(Offline)

Start()

Stop()

RegisterServer(Online)

RegisterServer(Online)

RegisterServer(Offline)

The Server must create a

SecureChannel before calling

RegisterServer

Figure 11 – The Registration Process – Manually Launched Servers

The registration process for automatically launched Servers is illustrated in Figure 12.

[image: image12.emf]Administrator

Discovery

Server

Server

Install()

RegisterServer(Online)

Connect()

Disconnect()

RegisterServer(Online)

RegisterServer(Online)

Client

The Server must create a

SecureChannel before calling

RegisterServer

Figure 12 – The Registration Process – Automatically Launched Servers

The registration process is designed to be platform independent, robust and able to minimize errors created by misconfiguration. For that reason, Servers shall register themselves more than once.

Under normal conditions, Servers shall periodically register with the Discovery Server as long as they are able to receive connections from Clients. If a Server goes offline then it shall register itself once more and indicate that it is going offline. The registration frequency should be configurable, however, the default is 10 minutes.

If an error occurs during registration (e.g. the Discovery Server is not running) then the Server shall periodically re-attempt registration. The frequency of these attempts should start at 1 second but gradually increase until the registration frequency is the same as what it would be if no errors occurred. The recommended approach would double the period each attempt until reaching the maximum.

When a Server registers with the a Discovery Server it may choose to provide a semaphore file which the Discovery Server can use to determine if the Server has been uninstalled from the machine. The Discovery Server shall have read access to the file system that contains the file.

5.4.4.2 Parameters

Table 5 defines the parameters for the Service.

Table 5 – RegisterServer Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters.
The authenticationToken is always omitted.

The type RequestHeader is defined in 7.26.

	
server
	RegisteredServer
	The server to register.

	

serverUri
	String
	The globally unique identifier for the Server instance.

	

productUri
	String
	The globally unique identifier for the Server product.

	

serverNames []
	LocalizedText
	A list of localized descriptive names for the Server.

The list shall have at least one valid entry.

	

serverType
	Enum

ApplicationType
	The type of application.

The enumeration values are defined in Table 103.

The value “CLIENT_1” (The application is a Client) is not allowed.

	

gatewayServerUri
	String
	The URI of the Gateway Server associated with the discoveryUrls.

This value is only specified by Gateway Servers that wish to register the Servers that they provide access to.

For Servers that do not act as a Gateway Server this parameter shall be null.

	

discoveryUrls []
	String
	A list of Discovery Endpoints for the Server.

The list shall have at least one valid entry.

	

semaphoreFilePath
	String
	The path to the semaphore file used to identify the server instance.

The Discovery Server shall check that this file exists before returning the ApplicationDescription to the client.

If the same semaphore file is used by another Server then that registration is deleted and replaced by the one being passed as part of this service invocation.

If this value is null or empty then the DiscoveryServer does not attempt to verify the existence of the file.

	

isOnline
	Boolean
	True if the Server is currently able to accept connections from Clients.

	
	
	

	Response
	
	

	
ResponseHeader
	ResponseHeader
	Common response parameters.
The type ResponseHeader is defined in 7.27.

5.4.4.3 Service Results
Table 6 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 6 – RegisterServer Service Result Codes

	Symbolic Id
	Description

	Bad_ServerUriInvalid
	See Table 165 for the description of this result code.

	Bad_ServerNameMissing
	No ServerName was specified.

	Bad_DiscoveryUrlMissing
	No DiscoveryUrl was specified.

	Bad_SempahoreFileMissing
	The semaphore file specified is not valid.

5.5 SecureChannel Service Set

5.5.1 Overview

This Service Set defines Services used to open a communication channel that ensures the confidentiality and Integrity of all Messages exchanged with the Server. The base concepts for OPC UA security are defined in Part 2.
The SecureChannel Services are unlike other Services because they are not implemented directly by the OPC UA Application. Instead, they are provided by the Communication Stack on which the OPC UA Application is built. For example, an OPC UA Server may be built on a SOAP stack that allows applications to establish a SecureChannel using the WS Secure Conversation specification. In these cases, the OPC UA Application shall verify that the Message it received was in the context of a WS Secure Conversation. Part 6 describes how the SecureChannel Services are implemented.

A SecureChannel is a long-running logical connection between a single Client and a single Server. This channel maintains a set of keys known only to the Client and Server, which are used to authenticate and encrypt Messages sent across the network. The SecureChannel Services allow the Client and Server to securely negotiate the keys to use.
An EndpointDescription tells a Client how to establish a SecureChannel with a given Endpoint. A Client may obtain the EndpointDescription from a Discovery Server, via some non-UA defined directory server or from its own configuration.
The exact algorithms used to authenticate and encrypt Messages are described in the SecurityPolicy field of the EndpointDescription. A Client shall use these algorithms when it creates a SecureChannel.
Note that some SecurityPolicies defined in Part 7 will turn off authentication and encryption resulting in a SecureChannel that provides no security.
When a Client and Server are communicating via a SecureChannel, they shall verify that all incoming Messages have been signed and encrypted according to the requirements specified in the EndpointDescription. An OPC UA Application shall not process any Message that does not conform to these requirements.

The relationship between the SecureChannel and the OPC UA Application depends on the implementation technology. Part 6 defines any requirements that depend on the technology used.

The correlation between the OPC UA Application Session and the SecureChannel is illustrated in Figure 13. The Communication Stack is used by the OPC UA Applications to exchange Messages. In a first step, the SecureChannel Services are used to establish a SecureChannel between the two Communication Stacks which allows the secure exchange of Messages. In a second step, the OPC UA Applications use the Session Service Set to establish a OPC UA Application Session.

[image: image13.wmf]

OPC UA

Client

OPC UA

Server

OPC

UA A

pplication

OPC

UA

A

pplication

Communication

Stack

Communication

Stack

Session

Secure

Channel

Figure 13 – SecureChannel and Session Services

Once a Client has established a Session it may wish to access the Session from a different SecureChannel. The Client can do this by validating the new SecureChannel with the ActivateSession Service described in 5.6.3.

If a Server acts as a Client to other Servers, which is commonly referred to as Server chaining, then the Server shall be able to maintain user level security. By this we mean that the user identity should be passed to the underlying server or it should be mapped to an appropriate user identity in the underlying server. It is unacceptable to ignore user level security. This is required to ensure that security is maintained and that a user does not obtain information that they should not have access to. Whenever possible a Server should impersonate the original Client by passing the original Client’s user identity to the underlying Server when it calls the ActiveSession Service. If impersonation is not an option then the Server shall map the original Client’s user identity onto a new user identity which the underlying Server does recognize.
5.5.2 OpenSecureChannel

5.5.2.1 Description

This Service is used to open or renew a SecureChannel that can be used to ensure Confidentiality and Integrity for Message exchange during a Session. This Service requires the Communication Stack to apply the various security algorithms to the Messages as they are sent and received. Specific implementations of this Service for different Communication Stacks are described in Part 6.

Each SecureChannel has a globally-unique identifier and is valid for a specific combination of Client and Server application instances. Each channel contains one or more SecurityTokens that identify a set of cryptography keys that are used to encrypt and authenticate Messages. SecurityTokens also have globally-unique identifiers which are attached to each Message secured with the token. This allows an authorized receiver to know how to decrypt and verify the Message.

SecurityTokens have a finite lifetime negotiated with this Service. However, differences between the system clocks on different machines and network latencies mean that valid Messages could arrive after the token has expired. To prevent valid Messages from being discarded, the applications should do the following:

1. Clients should request a new SecurityTokens after 75% of its lifetime has elapsed. This should ensure that Clients will receive the new SecurityToken before the old one actually expires.

2. Servers should use the existing SecurityToken to secure outgoing Messages until the SecurityToken expires or the Server receives a Message secured with a new SecurityToken. This should ensure that Clients do not reject Messages secured with the new SecurityToken that arrive before the Client receives the new SecurityToken.

3. Clients should accept Messages secured by an expired SecurityToken for up to 25% of the token lifetime. This should ensure that Messages sent by the Server before the token expired are not rejected because of network delays.

Each SecureChannel exists until it is explicitly closed or until the last token has expired and the overlap period has elapsed.

The OpenSecureChannel request and response Messages shall be signed with the sender's Certificate. These Messages shall always be encrypted. If the transport layer does not provide encryption, then these Messages shall be encrypted with the receiver's Certificate.

The Certificates used in the OpenSecureChannel service shall be the application instance Certificates. Clients and Servers shall verify that the same Certificates were used in the CreateSession and ActivateSession services.

5.5.2.2 Parameters

Table 7 defines the parameters for the Service.

Table 7 – OpenSecureChannel Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters. The authenticationToken is always omitted.

The type RequestHeader is defined in 7.26.

	
clientCertificate
	ApplicationInstance

Certificate
	A Certificate that identifies the Client.

The OpenSecureChannel request shall be signed with this Certificate.
The ApplicationInstanceCertificate type is defined in 7.2.

	
requestType
	enum

SecurityToken RequestType
	The type of SecurityToken request:

An enumeration that shall be one of the following:

ISSUE_0
creates a new SecurityToken for a new SecureChannel.

RENEW_1
creates a new SecurityToken for an existing SecureChannel.

	
secureChannelId
	ByteString
	The identifier for the SecureChannel that the new token should belong to. This parameter shall be null when creating a new SecureChannel.

	
securityMode
	Enum

MessageSecurityMode
	The type of security to apply to the messages.
The type MessageSecurityMode type is defined in 7.14.
A SecureChannel may have to be created even if the securityMode is NONE. The exact behaviour depends on the mapping used and is described in the Part 6.

	
securityPolicyUri
	String
	The URI for SecurityPolicy to use when securing messages sent over the SecureChannel.

The set of known URIs and the SecurityPolicies associated with them are defined in Part 7.

	
clientNonce
	ByteString
	A random number that shall not be used in any other request. A new clientNonce shall be generated for each time a SecureChannel is renewed.
This parameter shall have a length equal to key size used for the symmetric encryption algorithm that is identified by the securityPolicyUri.

	
requestedLifetime
	Duration
	The requested lifetime, in milliseconds, for the new SecurityToken. It specifies when the Client expects to renew the SecureChannel by calling the OpenSecureChannel Service again. If a SecureChannel is not renewed, then all Messages sent using the current SecurityTokens shall be rejected by the receiver.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader type definition).

	
securityToken
	ChannelSecurityToken
	Describes the new SecurityToken issued by the Server.

	

channelId
	ByteString
	A unique identifier for the SecureChannel. This is the identifier that shall be supplied whenever the SecureChannel is renewed.

	

tokenId
	ByteString
	A unique identifier for a single SecurityToken within the channel. This is the identifier that shall be passed with each Message secured with the SecurityToken.

	

createdAt
	UtcTime
	When the SecurityToken was created.

	

revisedLifetime
	Duration
	The lifetime of the SecurityToken in milliseconds. The UTC expiration time for the token may be calculated by adding the lifetime to the createdAt time.

	
serverNonce
	ByteString
	A random number that shall not be used in any other request. A new serverNonce shall be generated for each time a SecureChannel is renewed.
This parameter shall have a length equal to key size used for the symmetric encryption algorithm that is identified by the securityPolicyUri.

5.5.2.3 Service results

Table 8 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 8 – OpenSecureChannel Service Result Codes

	Symbolic Id
	Description

	Bad_SecurityChecksFailed
	See Table 165 for the description of this result code.

	Bad_CertificateTimeInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerTimeInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateHostNameInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateUriInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateUseNotAllowed
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerUseNotAllowed
	See Table 165 for the description of this result code.

	Bad_CertificateUntrusted
	See Table 165 for the description of this result code.

	Bad_CertificateRevocationUnknown
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerRevocationUnknown
	See Table 165 for the description of this result code.

	Bad_CertificateRevoked
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerRevoked
	See Table 165 for the description of this result code.

	Bad_RequestTypeInvalid
	The security token request type is not valid.

	Bad_SecurityModeRejected
	The security mode does not meet the requirements set by the Server.

	Bad_SecurityPolicyRejected
	The security policy does not meet the requirements set by the Server.

	Bad_SecureChannelIdInvalid
	See Table 165 for the description of this result code.

	Bad_NonceInvalid
	See Table 165 for the description of this result code.

5.5.3 CloseSecureChannel

5.5.3.1 Description

This Service is used to terminate a SecureChannel.

The request Messages shall be signed with the appropriate key associated with the current token for the SecureChannel.

5.5.3.2 Parameters

Table 9 defines the parameters for the Service.

Table 9 – CloseSecureChannel Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters. The sessionId is always omitted.
The type RequestHeader is defined in 7.26.

	
secureChannelId
	ByteString
	The identifier for the SecureChannel to close.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

5.5.3.3 Service results

Table 10 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 10 – CloseSecureChannel Service Result Codes

	Symbolic Id
	Description

	Bad_SecureChannelIdInvalid
	See Table 165 for the description of this result code.

5.6 Session Service Set

5.6.1 Overview

This Service Set defines Services for an application layer connection establishment in the context of a Session.

5.6.2 CreateSession

5.6.2.1 Description

This Service is used by an OPC UA Client to create a Session and the Server returns two values which uniquely identify the Session. The first value is the sessionId which is used to identify the Session in the audit logs and in the Server address space. The second is the authenticationToken which is used to associate an incoming request with a Session.
Before calling this Service, the Client shall create a SecureChannel with the OpenSecureChannel Service to ensure the Integrity of all Messages exchanged during a Session. This SecureChannel has a unique identifier, which the Server shall associate with the authenticationToken. The Server may accept requests with the authenticationToken only if they are associated with the same SecureChannel that was used to create the Session. The Client may associate a new SecureChannel with the Session by calling the ActivateSession method.
The SecureChannel is always managed by the Communication Stack which means it shall provide APIs which the Server can use to find out information about the SecureChannel used for any given request. The Communication Stack shall, at a minimum, provide the SecurityPolicy and SecurityMode used by the SecureChannel. It shall also provide a SecureChannelId which uniquely identifies the SecureChannel or the Client Certificate used to establish the SecureChannel. The Server uses one of these to identify the SecureChannel used to send a request. 7.29 describes how to create the authenticationToken for different types of Communication Stack.

Depending upon on the SecurityPolicy and the SecurityMode of the SecureChannel, the exchange of the Application Instance Certificates and the Nonces may be optional and the signatures may be empty. See Part 7 for the definition of SecurityPolicies and the handling of these parameters.
The Server returns its EndpointDescriptions in the response. Clients use this information to determine whether the list of EndpointDescriptions returned from the Discovery Endpoint matches the Endpoints that the Server has. If there is a difference the Client shall close the Session and report an error. The Server returns all EndpointDescriptions for the ServerUri specified by the Client in the request. The Client only verifies EndpointDescriptions with a transportProfileUri that match the profileUri specified in original the GetEndpoints request. A Client may skip this check if the EndpointDescriptions were provided by a trusted source such as the Administrator.
The Session created with this Service shall not be used until the Client calls the ActivateSession Service and provides its SoftwareCertificates and proves possession of its application instance Certificate and any user identity token that it provided.

The response also contains a list of SoftwareCertificates that identify the capabilities of the Server. It contains the list of OPC UA Profiles supported by the Server. OPC UA Profiles are defined in Part 7.

Additional Certificates issued by other organisations may be included to identify additional Server capabilities. Examples of these Profiles include support for specific information models and support for access to specific types of devices.

When a Session is created, the Server adds an entry for the Client in its SessionDiagnosticArray Variable. See Part 5 for a description of this Variable.

Sessions are created to be independent of the underlying communications connection. Therefore, if a communications connection fails, the Session is not immediately affected. The exact mechanism to recover from an underlying communication connection error depends on the SecureChannel mapping described in Part 6.

Sessions are terminated by the Server automatically if the Client fails to issue a Service request on the Session within the timeout period negotiated by the Server in the CreateSession Service response. This protects the Server against Client failures and against situations where a failed underlying connection cannot be re-established. Clients shall be prepared to submit requests in a timely manner to prevent the Session from closing automatically. Clients may explicitly terminate Sessions using the CloseSession Service.

When a Session is terminated, all outstanding requests on the Session are aborted and Bad_SessionClosed StatusCodes are returned to the Client. In addition, the Server deletes the entry for the Client from its SessionDiagnosticArray Variable and notifies any other Clients who were subscribed to this entry.

If a Client invokes the CloseSession Service then all Subscriptions associated with the Session are also deleted if the deleteSubscriptions flag is set to TRUE. If a Server terminates a Session for any other reason, Subscriptions associated with the Session, are not deleted. Each Subscription has its own lifetime to protect against data loss in the case of a Session termination. In these cases, the Subscription can be reassigned to another Client before its lifetime expires.

Some Servers, such as aggregating Servers, also act as Clients to other Servers. These Servers typically support more than one system user, acting as their agent to the Servers that they represent. Security for these Servers is supported at two levels.

First, each OPC UA Service request contains a string parameter that is used to carry an audit record id. A Client, or any Server operating as a Client, such as an aggregating Server, can create a local audit log entry for a request that it submits. This parameter allows the Client to pass the identifier for this entry with the request. If the Server also maintains an audit log, it can include this id in the audit log entry that it writes. When the log is examined and the entry is found, the examiner will be able to relate it directly to the audit log entry created by the Client. This capability allows for traceability across audit logs within a system. See Part 2 for additional information on auditing. A Server that maintains an audit log shall provide the information in the audit log entries via event Messages defined in this Specification. The Server may choose to only provide the Audit information via event Messages. The Audit EventType is defined in Part 3.

Second, these aggregating Servers may open independent Sessions to the underlying Servers for each Client that accesses data from them. Figure 14 illustrates this concept.

[image: image14.emf]

 Aggregating OPC UA Server

The aggregating server establish es a separate session to its underlying servers for each of its users .

 OPC UA Server

 OPC UA Server

OPC UA Client

OPC UA Client

OPC UA Client

Sessions

Clients typically support a single system user

Figure 14 – Multiplexing Users on a Session

5.6.2.2 Parameters

Table 11 defines the parameters for the Service.

Table 11 – CreateSession Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters. The authenticationToken is always omitted.
The type RequestHeader is defined in 7.26.

	
clientDescription
	Application Description
	Information that describes the Client application.

The type ApplicationDescription is defined in 7.1.

	
serverUri
	String
	This value is only specified if the EndpointDescription has a gatewayServerUri.

This value is the applicationUri from the EndpointDescription which is the applicationUri for the underlying Server. The type EndpointDescription is defined in 7.9.

	
endpointUrl
	String
	The network address that the Client used to access the Session Endpoint.

The HostName portion of the URL should be one of the HostNames for the application that are specified in the Server’s ApplicationInstanceCertificate (see Cause 7.2). The Server shall raise an AuditUrlMismatchEventType event if the URL does not match the Server’s HostNames. AuditUrlMismatchEventType event type is defined in Part 5.
The Server uses this information for diagnostics and to determine the set of EndpointDescriptions to return in the response.

	
sessionName
	String
	Human readable string that identifies the Session. The Server makes this name and the sessionId visible in its AddressSpace for diagnostic purposes. The Client should provide a name that is unique for the instance of the Client.
If this parameter is not specified the Server shall assign a value.

	
clientNonce
	ByteString
	A random number that should never be used in any other request. This number shall have a minimum length of 32 bytes. Profiles may increase the required length. The Server shall use this value to prove possession of its application instance Certificate in the response.

	
clientCertificate
	ApplicationInstance

Certificate
	The application instance Certificate issued to the Client.
The ApplicationInstanceCertificate type is defined in 7.2.

	
Requested
SessionTimeout
	Duration
	Requested maximum number of milliseconds that a Session should remain open without activity. If the Client fails to issue a Service request within this interval, then the Server shall automatically terminate the Client Session.

	
maxResponse

MessageSize
	UInt32
	The maximum size, in bytes, for the body of any response message.

The Server should return a Bad_ResponseTooLarge service fault if a response message exceeds this limit.

The value zero indicates that this parameter is not used.

5.3 provides more information on the use of this parameter.

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader type).

	
sessionId
	NodeId
	A unique NodeId assigned by the Server to the Session. This identifier is used to access the diagnostics information for the Session in the Server address space. It is also used in the audit logs and any events that report information related to the Session. The Session diagnostic information is described in Part 5. Audit logs and their related events are described in 6.2

	
authentication

Token
	Session

AuthenticationToken
	A unique identifier assigned by the Server to the Session. This identifier shall be passed in the RequestHeader of each request and is used with the SecureChannelId to determine whether a Client has access to the Session. This identifier shall not be reused in a way that the Client or the Server has a chance of confusing them with a previous or existing Session.

The SessionAuthenticationToken type is described in 7.29.

	
revisedSession
Timeout
	Duration
	Actual maximum number of milliseconds that a Session shall remain open without activity. The Server should attempt to honour the Client request for this parameter, but may negotiate this value up or down to meet its own constraints.

	
serverNonce
	ByteString
	A random number that should never be used in any other request.

This number shall have a minimum length of 32 bytes.

The Client shall use this value to prove possession of its application instance Certificate in the ActivateSession request.

This value may also be used to prove possession of the userIdentityToken it specified in the ActivateSession request.

	
serverCertificate
	ApplicationInstance

Certificate
	The application instance Certificate issued to the Server.

A Server shall prove possession by using the private key to sign the Nonce provided by the Client in the request. The Client shall verify that this Certificate is the same as the one it used to create the SecureChannel.

The ApplicationInstanceCertificate type is defined in 7.2.

	
serverEndpoints []
	Endpoint Description
	List of Endpoints that the server supports.

The Server shall return a set of EndpointDescriptions available for the serverUri specified in the request. The EndpointDescription type is defined in 7.9. The Client shall verify this list with the list from a Discovery Endpoint if it used a Discovery Endpoint to fetch the EndpointDescriptions.

	
serverSoftware

Certificates []
	SignedSoftware Certificate
	These are the SoftwareCertificates which have been issued to the Server application.
The productUri contained in the SoftwareCertificates shall match the productUri in the EndpointDescription used by the Client to connect to the Server. Certificates without matching productUris should be ignored. Clients should call CloseSession if they are not satisfied with the SoftwareCertificates provided by the Server.
The SignedSoftwareCertificate type is defined in 7.31.

	
serverSignature
	SignatureData
	This is a signature generated with the private key associated with the serverCertificate. This parameter is calculated by appending the clientNonce to the clientCertificate and signing the resulting sequence of bytes.
The SignatureAlgorithm shall be the asymmetricSignature algorithm specified in the SecurityPolicy for the Endpoint.

The SignatureData type is defined in 7.30.

	
maxRequest

MessageSize
	UInt32
	The maximum size, in bytes, for the body of any request message.

The Client stack should return a Bad_RequestTooLarge error to the application if a request message exceeds this limit.

The value zero indicates that this parameter is not used.

5.3 provides more information on the use of this parameter.

5.6.2.3 Service results

Table 12 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 12 – CreateSession Service Result Codes

	Symbolic Id
	Description

	Bad_SecureChannelIdInvalid
	See Table 165 for the description of this result code.

	Bad_NonceInvalid
	See Table 165 for the description of this result code.

	Bad_SecurityChecksFailed
	See Table 165 for the description of this result code.

	Bad_CertificateTimeInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerTimeInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateHostNameInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateUriInvalid
	See Table 165 for the description of this result code.

	Bad_CertificateUseNotAllowed
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerUseNotAllowed
	See Table 165 for the description of this result code.

	Bad_CertificateUntrusted
	See Table 165 for the description of this result code.

	Bad_CertificateRevocationUnknown
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerRevocationUnknown
	See Table 165 for the description of this result code.

	Bad_CertificateRevoked
	See Table 165 for the description of this result code.

	Bad_CertificateIssuerRevoked
	See Table 165 for the description of this result code.

	Bad_TooManySessions
	The server has reached its maximum number of sessions.

	Bad_ServerUriInvalid
	See Table 165 for the description of this result code.

5.6.3 ActivateSession

5.6.3.1 Description

This Service is used by the Client to submit its SoftwareCertificates to the Server for validation and to specify the identity of the user associated with the Session. This Service request shall be issued by the Client before it issues any other Service request after CreateSession. Failure to do so shall cause the Server to close the Session.
Whenever the Client calls this Service the Client shall prove that it is the same application that called the CreateSession Service. The Client does this by creating a signature with the private key associated with the clientCertificate specified in the CreateSession request. This signature is created by appending the last serverNonce provided by the Server to the serverCertificate and calculating the signature of the resulting sequence of bytes.

Once used, a serverNonce cannot be used again. For that reason, the Server returns a new serverNonce each time the ActivateSession Service is called.

When the ActivateSession Service is called for the first time then the Server shall reject the request if the SecureChannel is not same as the one associated with the CreateSession request. Subsequent calls to ActivateSession may be associated with different SecureChannels. If this is the case then the Server shall verify that the Certificate the Client used to create the new SecureChannel is the same as the Certificate used to create the original SecureChannel. In addition, the Server shall verify that the Client supplied a UserIdentityToken that is identical to the token currently associated with the Session. Once the Server accepts the new SecureChannel it shall reject requests sent via the old SecureChannel.
The ActivateSession Service is used to associate a user identity with a Session. When a Client provides a user identity then it shall provide proof that is authorized to use that user identity. The exact mechanism used to provide this proof depends on the type of the UserIdentityToken. If the token is a UserNameIdentityToken then the proof is the password that included in the token. If the token is an X509IdentityToken then the proof is a signature generated with private key associated with the Certificate. The data to sign is created by appending the last serverNonce to the serverCertificate specified in the CreateSession response. If a token includes a secret then it should be encrypted using the public key from the serverCertificate.
Clients can change the identity of a user associated with a Session by calling the ActivateSession Service. The Server validates the signatures provided with the request and then validates the new user identity. If no errors occur the Server replaces the user identity for the Session. Changing the user identity for a Session may cause discontinuities in active Subscriptions because the Server may have to tear down connections to underlying system and reestablish them using the new credentials.

When a Client supplies a list of locale ids in the request, each locale id is required to contain the language component. It may optionally contain the <country/region> component. When the Server returns the response, it also may return both the language and the country/region or just the language as its default locale id.

When a Server returns a string to the Client, it first determines if there are available translations for it. If there are, the Server returns the string whose locale id exactly matches the locale id with the highest priority in the Client-supplied list.

If there are no exact matches, the Server ignores the <country/region> component of the locale id, and returns the string whose <language> component matches the <language> component of the locale id with the highest priority in the Client supplied list.

If there still are no matches, the Server returns the string that it has along with the locale id.
A Gateway Server is expected to impersonate the user provided by the Client when it connects to the underlying Server. This means it shall re-calculate the signatures on the UserIdentityToken using the nonces provided by the underlying Server. The Gateway Server will have to use its own user credentials if the UserIdentityToken provided by the Client does not support impersonation.
5.6.3.2 Parameters

Table 13 defines the parameters for the Service.

Table 13 – ActivateSession Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters. The type RequestHeader is defined in 7.26.

	
clientSignature
	SignatureData
	This is a signature generated with the private key associated with the clientCertificate.
The SignatureAlgorithm shall be the asymmetricSignature algorithm specified in the SecurityPolicy for the Endpoint.

The SignatureData type is defined in 7.30.

	
clientSoftwareCertificates []
	SignedSoftware

Certificate
	These are the SoftwareCertificates which have been issued to the Client application.
The productUri contained in the SoftwareCertificates shall match the productUri in the ApplicationDescription passed by the Client in the CreateSession requests. Certificates without matching productUris should be ignored.
Servers may reject connections from Clients if they are not satisfied with the SoftwareCertificates provided by the Client.

This parameter only needs to be specified during the first call to ActivateSession for a single application Session.
The SignedSoftwareCertificate type is defined in 7.31.

	
localeIds []
	LocaleId
	List of locale ids in priority order for localized strings. The first localeId in the list has the highest priority. If the Server returns a localized string to the Client, the Server shall return the translation with the highest priority that it can. If it does not have a translation for any of the locales identified in this list, then it shall return the string value that it has and include the locale id with the string. See Part 3 for more detail on locale ids. If the Client fails to specify at least one locale id, the Server shall use any that it has.

This parameter only needs to be specified during the first call to ActivateSession during a single application Session. If it is not specified the Server shall keep using the current localeIds for the Session.

	
userIdentityToken
	Extensible Parameter
UserIdentityToken
	The credentials of the user associated with the Client application. The Server uses these credentials to determine whether the Client should be allowed to activate a Session and what resources the Client has access to during this Session.
The UserIdentityToken is an extensible parameter type defined in 7.35.
The EndpointDescription specifies what UserIdentityTokens the Server shall accept.

	
userTokenSignature
	SignatureData
	If the Client specified a user identity token that supports digital signatures, then it shall create a signature and pass it as this parameter. Otherwise the parameter is omitted.

The SignatureAlgorithm depends on the identity token type.

The SignatureData type is defined in 7.30.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
serverNonce
	ByteString
	A random number that should never be used in any other request.

This number shall have a minimum length of 32 bytes.

The Client shall use this value to prove possession of its application instance Certificate in the next call to ActivateSession request.

	
results []
	StatusCode
	List of validation results for the SoftwareCertificates (see 7.33 for StatusCode definition).

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information associated with SoftwareCertificate validation errors (see 7.8 for DiagnosticInfo definition). This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.6.3.3 Service results

Table 14 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 14 – ActivateSession Service Result Codes

	Symbolic Id
	Description

	Bad_IdentityTokenInvalid
	See Table 165 for the description of this result code.

	Bad_IdentityTokenRejected
	See Table 165 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_ApplicationSignatureInvalid
	The signature provided by the client application is missing or invalid.

	Bad_UserSignatureInvalid
	The user token signature is missing or invalid.

	Bad_NoValidCertificates
	The Client did not provide at least one software certificate that is valid and meets the profile requirements for the Server.

	Bad_IdentityChangeNotSupported
	The Server does not support changing the user identity assigned to the session.

5.6.4 CloseSession

5.6.4.1 Description

This Service is used to terminate a Session. The Server takes the following actions when it receives a CloseSession request:

c) It stops accepting requests for the Session. All subsequent requests received for the Session are discarded.

d) It returns negative responses with the StatusCode Bad_SessionClosed to all requests that are currently outstanding to provide for the timely return of the CloseSession response. Clients are urged to wait for all outstanding requests to complete before submitting the CloseSession request.

e) It removes the entry for the Client in its SessionDiagnosticArray Variable.

5.6.4.2 Parameters

Table 15 defines the parameters for the Service.

Table 15 – CloseSession Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
deleteSubscriptions
	Boolean
	If the value is TRUE, the Server deletes all Subscriptions associated with the Session. If the value is FALSE, the Server keeps the Subscriptions associated with the Session until they timeout based on their own lifetime.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

5.6.4.3 Service results

Table 16 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 16 – CloseSession Service Result Codes

	Symbolic Id
	Description

	Bad_SessionIdInvalid
	See Table 165 for the description of this result code.

5.6.5 Cancel

5.6.5.1 Description

This Service is used to cancel outstanding Service requests. Successfully cancelled service requests shall respond with Bad_RequestCancelledByClient.
5.6.5.2 Parameters

Table 17 defines the parameters for the Service.

Table 17 – Cancel Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
requestHandle
	IntegerId
	The requestHandle assigned to one or more requests that should be cancelled. All outstanding requests with the matching requestHandles shall be cancelled.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
cancelCount
	UInt32
	Number of cancelled requests.

5.6.5.3 Service results
Common StatusCodes are defined in Table 165.
5.7 NodeManagement Service Set

5.7.1 Overview

This Service Set defines Services to add and delete AddressSpace Nodes and References between them. All added Nodes continue to exist in the AddressSpace even if the Client that created them disconnects from the Server.

In the Services that follow, many of the NodeIds are represented by ExpandedNodeIds. ExpandedNodeIds identify the namespace by their string name rather than by their NamespaceTable index. This allows the Server to add the namespace to its NamespaceTable if necessary.

5.7.2 AddNodes
5.7.2.1 Description

This Service is used to add one or more Nodes into the AddressSpace hierarchy. Using this Service, each Node is added as the TargetNode of a HierarchicalReference to ensure that the AddressSpace is fully connected and that the Node is added as a child within the AddressSpace hierarchy (see Part 3).

5.7.2.2 Parameters

Table 18 defines the parameters for the Service.

Table 18 – AddNodes Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
nodesToAdd []
	AddNodesItem
	List of Nodes to add. All Nodes are added as a Reference to an existing Node using a hierarchical ReferenceType.

	

parentNodeId
	Expanded NodeId
	ExpandedNodeId of the parent Node for the Reference. The ExpandedNodeId type is defined in 7.10.

	

referenceTypeId
	NodeId
	NodeId of the hierarchical ReferenceType to use for the Reference from the parent Node to the new Node.

	

requestedNewNodeId
	Expanded NodeId
	Client requested expanded NodeId of the Node to add. The serverIndex in the expanded NodeId shall be 0.

If the Server cannot use this NodeId, it rejects this Node and returns the appropriate error code.

If the Client does not want to request a NodeId, then it sets the value of this parameter to the null expanded NodeId.

If the Node to add is a ReferenceType Node, its NodeId should be a numeric id. See Part 3 for a description of ReferenceType NodeIds.

	

browseName
	QualifiedName
	The browse name of the Node to add.

	

nodeClass
	NodeClass
	NodeClass of the Node to add.

	

nodeAttributes
	Extensible Parameter
NodeAttributes
	The Attributes that are specific to the NodeClass. The NodeAttributes parameter type is an extensible parameter type specified in 7.18.
A Client is allowed to omit values for some or all Attributes. If an Attribute value is omitted, the Server shall use the default values from the TypeDefinitionNode. If a TypeDefinitionNode was not provided the Server shall choose a suitable default value.

The Server may still add an optional Attribute to the Node with an appropriate default value even if the Client does not specify a value.

	

typeDefinition
	Expanded NodeId
	NodeId of the TypeDefinitionNode for the Node to add. This parameter shall be null for all NodeClasses other than Object and Variable in which case it shall be provided.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	AddNodesResult
	List of results for the Nodes to add. The size and order of the list matches the size and order of the nodesToAdd request parameter.

	

statusCode
	StatusCode
	StatusCode for the Node to add (see 7.33 for StatusCode definition).

	

addedNodeId
	NodeId
	Server assigned NodeId of the added Node. Null NodeId if the operation failed.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the Nodes to add (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the nodesToAdd request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.7.2.3 Service results

Table 19 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 19 – AddNodes Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.7.2.4 StatusCodes

Table 20 defines values for the operation level statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 20 – AddNodes Operation Level Result Codes

	Symbolic Id
	Description

	Bad_ParentNodeIdInvalid
	The parent node id does not to refer to a valid node.

	Bad_ReferenceTypeIdInvalid
	See Table 166 for the description of this result code.

	Bad_ReferenceNotAllowed
	The reference could not be created because it violates constraints imposed by the data model.

	Bad_NodeIdRejected
	The requested node id was rejected either because it was invalid or because the server does not allow node ids to be specified by the client.

	Bad_NodeIdExists
	The requested node id is already used by another node.

	Bad_NodeClassInvalid
	See Table 166 for the description of this result code.

	Bad_BrowseNameInvalid
	See Table 166 for the description of this result code.

	Bad_BrowseNameDuplicated
	The browse name is not unique among nodes that share the same relationship with the parent.

	Bad_NodeAttributesInvalid
	The node Attributes are not valid for the node class.

	Bad_TypeDefinitionInvalid
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

5.7.3 AddReferences
5.7.3.1 Description

This Service is used to add one or more References to one or more Nodes. The NodeClass is an input parameter that is used to validate that the Reference to be added matches the NodeClass of the TargetNode. This parameter is not validated if the Reference refers to a TargetNode in a remote Server.

In certain cases, adding new References to the AddressSpace shall require that the Server add new Server ids to the Server’s ServerTable Variable. For this reason, remote Servers are identified by their URI and not by their ServerTable index. This allows the Server to add the remote Server URIs to its ServerTable.

5.7.3.2 Parameters

Table 21 defines the parameters for the Service.

Table 21 – AddReferences Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
referencesToAdd []
	AddReferences Item
	List of Reference instances to add to the SourceNode. The targetNodeClass of each Reference in the list shall match the NodeClass of the TargetNode.

	

sourceNodeId
	NodeId
	NodeId of the Node to which the Reference is to be added. The source Node shall always exist in the Server to add the Reference. The isForward parameter can be set to FALSE if the target Node is on the local Server and the source Node on the remote Server.

	

referenceTypeId
	NodeId
	NodeId of the ReferenceType that defines the Reference.

	

isForward
	Boolean
	If the value is TRUE, the Server creates a forward Reference. If the value is FALSE, the Server creates an inverse Reference.

	

targetServerUri
	String
	URI of the remote Server. If this parameter is not null, it overrides the serverIndex in the targetNodeId.

	

targetNodeId
	Expanded NodeId
	Expanded NodeId of the TargetNode. The ExpandedNodeId type is defined in 7.10.

	

targetNodeClass
	NodeClass
	NodeClass of the TargetNode. The Client shall specify this since the TargetNode might not be accessible directly by the Server.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the References to add (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the referencesToAdd request parameter.

	
diagnosticInfos []
	Diagnostic Info
	List of diagnostic information for the References to add (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the referencesToAdd request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.7.3.3 Service results

Table 22 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 22 – AddReferences Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.7.3.4 StatusCodes

Table 23 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 23 – AddReferences Operation Level Result Codes

	Symbolic Id
	Description

	Bad_SourceNodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_ReferenceTypeIdInvalid
	See Table 166 for the description of this result code.

	Bad_ServerUriInvalid
	See Table 165 for the description of this result code.

	Bad_TargetNodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeClassInvalid
	See Table 166 for the description of this result code.

	Bad_ReferenceNotAllowed
	The reference could not be created because it violates constraints imposed by the data model on this server.

	Bad_ReferenceLocalOnly
	The reference type is not valid for a reference to a remote Server.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_DuplicateReferenceNotAllowed
	The reference type between the nodes is already defined.

	Bad_InvalidSelfReference
	The server does not allow this type of self reference on this node.

5.7.4 DeleteNodes

5.7.4.1 Description

This Service is used to delete one or more Nodes from the AddressSpace.

When any of the Nodes deleted by an invocation of this Service is the TargetNode of a Reference, then those References are left unresolved based on the deleteTargetReferences parameter.

When any of the Nodes deleted by an invocation of this Service is being monitored, then a Notification containing the status code Bad_NodeIdUnknown is sent to the monitoring Client indicating that the Node has been deleted.

5.7.4.2 Parameters

Table 24 defines the parameters for the Service.

Table 24 – DeleteNodes Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
nodesToDelete []
	DeleteNodes Item
	List of Nodes to delete

	

nodeId
	NodeId
	NodeId of the Node to delete.

	

deleteTargetReferences
	Boolean
	A Boolean parameter with the following values :

TRUE
delete References in TargetNodes that Reference the Node to delete.

FALSE
delete only the References for which the Node to delete is the source.
The Server can not guarantee that he is able to delete all target References if this parameter is TRUE.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the Nodes to delete (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the list of the nodesToDelete request parameter.

	
diagnosticInfos []
	Diagnostic Info
	List of diagnostic information for the Nodes to delete (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the nodesToDelete request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.7.4.3 Service results

Table 25 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 25 – DeleteNodes Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.7.4.4 StatusCodes

Table 26 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.
Table 26 – DeleteNodes Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_NoDeleteRights
	See Table 166 for the description of this result code.

	Uncertain_ReferenceNotDeleted
	The server was not able to delete all target references.

5.7.5 DeleteReferences

5.7.5.1 Description

This Service is used to delete one or more References of a Node.

When any of the References deleted by an invocation of this Service are contained in a View, then the ViewVersion Property is updated if this Property is supported.

The deletion of a Reference shall trigger a ModelChange Event.

5.7.5.2 Parameters

Table 24 defines the parameters for the Service.

Table 27 – DeleteReferences Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
referencesToDelete []
	DeleteReferences Item
	List of References to delete.

	

sourceNodeId
	NodeId
	NodeId of the Node that contains the Reference to delete.

	

referenceTypeId
	NodeId
	NodeId of the ReferenceType that defines the Reference to delete.

	

isForward
	Boolean
	If the value is TRUE, the Server deletes a forward Reference. If the value is FALSE, the Server deletes an inverse Reference.

	

targetNodeId
	ExpandedNodeId
	NodeId of the TargetNode of the Reference.

If the Server index indicates that the TargetNode is a remote Node, then the nodeId shall contain the absolute namespace URI. If the TargetNode is a local Node the nodeId shall contain the namespace index.

	

deleteBidirectional
	Boolean
	A Boolean parameter with the following values :

TRUE
delete the specified Reference and the opposite Reference from the TargetNode. If the TargetNode is located in a remote Server, the Server is permitted to delete the specified Reference only.

FALSE
delete only the specified Reference.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the References to delete (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the referencesToDelete request parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the References to delete (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the referencesToDelete request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.7.5.3 Service results

Table 28 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 28 – DeleteReferences Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.7.5.4 StatusCodes

Table 29 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.
Table 29 – DeleteReferences Operation Level Result Codes

	Symbolic Id
	Description

	Bad_SourceNodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_ReferenceTypeIdInvalid
	See Table 166 for the description of this result code.

	Bad_ServerIndexInvalid
	The server index is not valid.

	Bad_TargetNodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_NoDeleteRights
	See Table 166 for the description of this result code.

5.8 View Service Set

5.8.1 Overview
Clients use the browse Services of the View Service Set to navigate through the AddressSpace or through a View which is a subset of the AddressSpace.
A View is a subset of the AddressSpace created by the Server. Future versions of this specification may also define services to create Client-defined Views. See Part 5 for a description of the organisation of views in the AddressSpace.

5.8.2 Browse

5.8.2.1 Description

This Service is used to discover the References of a specified Node. The browse can be further limited by the use of a View. This Browse Service also supports a primitive filtering capability.

5.8.2.2 Parameters

Table 30 defines the parameters for the Service.

Table 30 – Browse Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
view
	ViewDescription
	Description of the View to browse (see 7.37 for ViewDescription definition). An empty ViewDescription value indicates the entire AddressSpace. Use of the empty ViewDescription value causes all References of the nodeToBrowse to be returned. Use of any other View causes only the References of the nodeToBrowse that are defined for that View to be returned.

	
requestedMax

ReferencesPerNode
	Counter
	Indicates the maximum number of references to return for each starting Node specified in the request. The value 0 indicates that the Client is imposing no limitation (see 7.5 for Counter definition).

	
nodesToBrowse []
	BrowseDescription
	A list of nodes to Browse

	

nodeId
	NodeId
	NodeId of the Node to be browsed. The passed nodeToBrowse shall be part of the passed view.

	

browseDirection
	enum

BrowseDirection
	An enumeration that specifies the direction of References to follow. It has the following values :

FORWARD_0
select only forward References.

INVERSE_1

select only inverse References.

BOTH_2

select forward and inverse References.

The returned References do indicate the direction the Server followed in the isForward parameter of the ReferenceDescription.
Symmetric References are always considered to be in forward direction therefore the isForward flag is always set to TRUE and symmetric References are not returned if browseDirection is set to INVERSE_1.

	

referenceTypeId
	NodeId
	Specifies the NodeId of the ReferenceType to follow. Only instances of this ReferenceType or its subtypes are returned.

If not specified then all References are returned.

	

includeSubtypes
	Boolean
	Indicates whether subtypes of the ReferenceType should be included in the browse. If TRUE, then instances of referenceTypeId and all of its subtypes are returned.

	

nodeClassMask
	UInt32
	Specifies the NodeClasses of the TargetNodes. Only TargetNodes with the selected NodeClasses are returned. The NodeClasses are assigned the following bits:

Bit

NodeClass

0

Object

1

Variable

2

Method

3

ObjectType

4

VariableType

5

ReferenceType

6

DataType

7

View

If set to zero, then all NodeClasses are returned.

	

resultMask
	UInt32
	Specifies the fields in the ReferenceDescription structure that should be returned. The fields are assigned the following bits:
Bit

Result

0

ReferenceType

1

IsForward

2

NodeClass

3

BrowseName

4

DisplayName

5

TypeDefinition

The ReferenceDescription type is defined in 7.24.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	BrowseResult
	A list of BrowseResults. The size and order of the list matches the size and order of the nodesToBrowse specified in the request.

The BrowseResult type is defined in 7.3.

	
diagnosticInfos []
	Diagnostic Info
	List of diagnostic information for the results (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the results response parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.8.2.3 Service results

Table 31 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 31 – Browse Service Result Codes

	Symbolic Id
	Description

	Bad_ViewIdUnknown
	See Table 165 for the description of this result code.

	Bad_ViewTimestampInvalid
	See Table 165 for the description of this result code.

	Bad_ViewParameterMismatchInvalid
	See Table 165 for the description of this result code.

	Bad_ViewVersionInvalid
	See Table 165 for the description of this result code.

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.8.2.4 StatusCodes

Table 32 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.
Table 32 – Browse Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_ReferenceTypeIdInvalid
	See Table 166 for the description of this result code.

	Bad_BrowseDirectionInvalid
	See Table 166 for the description of this result code.

	Bad_NodeNotInView
	See Table 166 for the description of this result code.

	Bad_NoContinuationPoints
	See Table 166 for the description of this result code.

	Uncertain_NotAllNodesAvailable
	Browse results may be incomplete because of the unavailability of a subsystem.

5.8.3 BrowseNext

5.8.3.1 Description

This Service is used to request the next set of Browse or BrowseNext response information that is too large to be sent in a single response. “Too large” in this context means that the Server is not able to return a larger response or that the number of results to return exceeds the maximum number of results to return that was specified by the Client in the original Browse request. The BrowseNext shall be submitted on the same Session that was used to submit the Browse or BrowseNext that is being continued.

5.8.3.2 Parameters

Table 33 defines the parameters for the Service.

Table 33 – BrowseNext Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
releaseContinuationPoints
	Boolean
	A Boolean parameter with the following values :

TRUE
passed continuationPoints shall be reset to free resources in the Server.

FALSE
passed continuationPoints shall be used to get the next set of browse information.

A Client shall always use the continuation point returned by a Browse or BrowseNext response to free the resources for the continuation point in the Server. If the Client does not want to get the next set of browse information, BrowseNext shall be called with this parameter set to TRUE.

	
continuationPoints []
	Continuation Point
	A list of Server-defined opaque values that represent continuation points. The value for a continuation point was returned to the Client in a previous Browse or BrowseNext response. These values are used to identify the previously processed Browse or BrowseNext request that is being continued and the point in the result set from which the browse response is to continue.
Clients may mix continuation points from different Browse or BrowseNext responses.

The ContinuationPoint type is described in 7.6.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	BrowseResult
	A list of references the met the criteria specified in the original Browse request.

The size and order of this list matches the size and order of the continuationPoints request parameter.

The BrowseResult type is defined in 7.3.

	
diagnosticInfos []
	Diagnostic Info
	List of diagnostic information for the results (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the results response parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.8.3.3 Service results

Table 34 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 34 – BrowseNext Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.8.3.4 StatusCodes
Table 35 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.
Table 35 – BrowseNext Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_ReferenceTypeIdInvalid
	See Table 166 for the description of this result code.

	Bad_BrowseDirectionInvalid
	See Table 166 for the description of this result code.

	Bad_NodeNotInView
	See Table 166 for the description of this result code.

	Bad_ContinuationPointInvalid
	See Table 166 for the description of this result code.

5.8.4 TranslateBrowsePathsToNodeIds

5.8.4.1 Description

This Service is used to request that the Server translates one or more browse paths to NodeIds. Each browse path is constructed of a starting Node and a RelativePath. The specified starting Node identifies the Node from which the RelativePath is based. The RelativePath contains a sequence of ReferenceTypes and BrowseNames.

One purpose of this Service is to allow programming against type definitions. Since BrowseNames shall be unique in the context of type definitions, a Client may create a browse path that is valid for a type definition and use this path on instances of the type. For example, an ObjectType “Boiler” may have a “HeatSensor” Variable as InstanceDeclaration. A graphical element programmed against the “Boiler” may need to display the Value of the “HeatSensor”. If the graphical element would be called on “Boiler1”, an instance of “Boiler”, it would need to call this Service specifying the NodeId of “Boiler1” as starting Node and the BrowseName of the “HeatSensor” as browse path. The Service would return the NodeId of the “HeatSensor” of “Boiler1” and the graphical element could subscribe to its Value Attribute.

If a Node has multiple targets with the same BrowseName, the Server shall return a list of NodeIds. However, since one of the main purposes of this Service is to support programming against type definitions, the NodeId of the Node based on the type definition of the starting Node is returned as the first NodeId in the list.
5.8.4.2 Parameters

Table 36 defines the parameters for the Service.

Table 36 – TranslateBrowsePathsToNodeIds Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
browsePaths []
	BrowsePath
	List of browse paths for which NodeIds are being requested.

	

startingNode
	NodeId
	NodeId of the starting Node for the browse path.

	

relativePath
	RelativePath
	The path to follow from the startingNode.

The last element in the relativePath shall always have a targetName specified. This further restricts the definition of the RelativePath type. The Server shall return Bad_BrowseNameInvalid if the targetName is missing.

The RelativePath structure is defined in Section 7.25.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	BrowsePathResult
	List of results for the list of browse paths. The size and order of the list matches the size and order of the browsePaths request parameter.

	

statusCode
	StatusCode
	StatusCode for the browse path (see 7.33 for StatusCode definition).

	

targets []
	BrowsePathTarget

	List of targets for the relativePath from the startingNode.

A Server may encounter a Reference to a Node in another Server which it can not follow while it is processing the RelativePath. If this happens the Server returns the NodeId of the external Node and sets the remainingPathIndex parameter to indicate which RelativePath elements still need to be processed. To complete the operation the Client shall connect to the other Server and call this service again using the target as the startingNode and the unprocessed elements as the relativePath.

	

targetId
	ExpandedNodeId
	The identifier for a target of the RelativePath.

	

remainingPathIndex
	Index
	The index of the first unprocessed element in the RelativePath.

This value shall be equal to the maximum value of Index data type if all elements were processed (see 7.12 for Index definition).

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the list of browse paths (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the browsePaths request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.8.4.3 Service results

Table 37 defines the Service results specific to this Service. Common StatusCodes are defined in 7.33.

Table 37 – TranslateBrowsePathsToNodeIds Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.8.4.4 StatusCodes

Table 38 defines values for the operation level statusCode parameters that are specific to this Service. Common StatusCodes are defined in Table 166.
Table 38 – TranslateBrowsePathsToNodeIds Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_NothingToDo
	See Table 165 for the description of this result code.
This code indicates that the relativePath contained an empty list.

	Bad_BrowseNameInvalid
	See Table 166 for the description of this result code.
This code indicates that a TargetName was missing in a RelativePath.

	Uncertain_ReferenceOutOfServer
	The path element has targets which are in another server.

	Bad_TooManyMatches
	The requested operation has too many matches to return.

Users should use queries for large result sets. Servers should allow at least 10 matches before returning this error code.

	Bad_QueryTooComplex
	The requested operation requires too many resources in the server.

	Bad_NoMatch
	The requested operation has no match to return.

5.8.5 RegisterNodes

A Server often has no direct access to the information that it manages. Variables or services might be in underlying systems and additional effort is required to establish a connection to these systems. The RegisterNodes Service can be used by Clients to register the Nodes that they know they will access repeatedly (e.g. Write, Call). It allows Servers to set up anything needed so that the access operations will be more efficient. Clients can expect performance improvements when using registered NodeIds, but the optimization measures are vendor-specific. For Variable Nodes Servers shall concentrate their optimization efforts on the Value Attribute.

Registered NodeIds are only guaranteed to be valid within the current Session. Clients shall unregister unneeded Ids immediately to free up resources.

RegisterNodes does not validate the NodeIds from the request. Servers will simply copy unknown NodeIds in the response. Structural NodeId errors (size violations, invalid id types) will cause the complete Service to fail.

For the purpose of Auditing, Servers shall not use the registered NodeIds but only the canonical NodeIds which is the value of the NodeId Attribute.
5.8.5.1 Parameters

Table 39 defines the parameters for the Service.

Table 39 – RegisterNodes Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
nodesToRegister []
	NodeId
	List of NodeIds to register that the client has retrieved through browsing, querying or in some other manner.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
registeredNodeIds []
	NodeId
	A list of NodeIds which the Client shall use for subsequent access operations. The size and order of this list matches the size and order of the nodesToRegister request parameter.

The Server may return the NodeId from the request or a new (an alias) NodeId. It is recommended that the Server return a numeric NodeIds for aliasing.

In case no optimization is supported for a Node, the Server shall return the NodeId from the request.

5.8.5.2 Service results

Table 40 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 40 – RegisterNodes Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.
Servers shall completely reject the RegisterNodes request if any of the NodeIds in the nodesToRegister parameter are structurally invalid.

5.8.6 UnregisterNodes
5.8.6.1 Description

This Service is used to unregister NodeIds that have been obtained via the RegisterNodes service.
UnregisterNodes does not validate the NodeIds from the request. Servers shall simply unregister NodeIds that are known as registered NodeIds. Any NodeIds that are in the list, but are not registered NodeIds are simply ignored.
5.8.6.2 Parameters

Table 46 defines the parameters for the Service.

Table 41 – UnregisterNodes Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
nodesToUnregister []
	NodeId
	A list of NodeIds that have been obtained via the RegisterNodes service.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

5.8.6.3 Service results

Table 47 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 42 – UnregisterNodes Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.9 Query Service Set

5.9.1 Overview

This Service Set is used to issue a Query to a Server. OPC UA Query is generic in that it provides an underlying storage mechanism independent Query capability that can be used to access a wide variety of OPC UA data stores and information management systems. OPC UA Query permits a Client to access data maintained by a Server without any knowledge of the logical schema used for internal storage of the data. Knowledge of the AddressSpace is sufficient.

An OPC UA Application is expected to use the OPC UA Query Services as part of an initialization process or an occasional information synchronization step. For example, OPC UA Query would be used for bulk data access of a persistent store to initialise an analysis application with the current state of a system configuration. A Query may also be used to initialise or populate data for a report.

A Query defines what instances of one or more TypeDefinitionNodes in the AddressSpace should supply a set of Attributes. Results returned by a Server are in the form of an array of QueryDataSets. The selected Attribute values in each QueryDataSet come from the definition of the selected TypeDefinitionNodes or related TypeDefinitionNodes and appear in results in the same order as the Attributes that were passed into the Query. Query also supports Node filtering on the basis of Attribute values, as well as relationships between TypeDefinitionNodes.
See Appendix B for example queries.

5.9.2 Querying Views

A View is a subset of the AddressSpace available in the Server. See Part 5 for a description of the organisation of Views in the AddressSpace.

For any existing View, a Query may be used to return a subset of data from the View. When an application issues a Query against a View, only data defined by the View is returned. Data not included in the View but included in the original AddressSpace is not returned.

The Query Services supports access to current and historical data. The Service supports a Client querying a past version of the AddressSpace. Clients may specify a ViewVersion or a Timestamp in a Query to access past versions of the AddressSpace. OPC UA Query is complementary to Historical Access in that the former is used to Query an AddressSpace that existed at a time and the latter is used to Query for the value of Attributes over time. In this way, a Query can be used to retrieve a portion of a past AddressSpace so that Attribute value history may be accessed using Historical Access even if the Node is no longer in the current AddressSpace.
Servers that support Query are expect to be able to access the address space that is associated with the local Server and any Views that are available on the local Server. If a View or the address space also references a remote Server, query may be able to access the address space of remote Server, but it is not required. If a Server does access a remote Server the access shall be accomplished using the user identity of the Client as described in 5.5.1.
5.9.3 QueryFirst

5.9.3.1 Description

This Service is used to issue a Query request to the Server. The complexity of the Query can range from very simple to highly sophisticated. The Query can simply request data from instances of a TypeDefinitionNode or TypeDefinitionNode subject to restrictions specified by the filter. On the other hand, the Query can request data from instances of related Node types by specifying a RelativePath from an originating TypeDefinitionNode. In the filter, a separate set of paths can be constructed for limiting the instances that supply data. A filtering path can include multiple RelatedTo operators to define a multi-hop path between source instances and target instances. For example, one could filter on students that attend a particular school, but return information about students and their families. In this case, the student school relationship is traversed for filtering, but the student family relationship is traversed to select data. For a complete description of ContentFilter see 7.4, also see B.1 for simple examples and B.2 for more complex examples of content filter and queries.

The Client provides an array of NodeTypeDescription which specify the NodeId of a TypeDefinitionNode and selects what Attributes are to be returned in the response. A client can also provide a set of RelativePaths through the type system starting from an originating TypeDefinitionNode. Using these paths, the client selects a set of Attributes from Nodes that are related to instances of the originating TypeDefinitionNode. Additionally, the Client can request the Server return instances of subtypes of TypeDefinitionNodes. If a selected Attribute does not exist in a TypeDefinitionNode but does exist in a subtype, it is assumed to have a null value in the TypeDefinitionNode in question. Therefore, this does not constitute an error condition and a null value is returned for the Attribute.

The Client can use the filter parameter to limit the result set by restricting Attributes and Properties to certain values. Another way the Client can use a filter to limit the result set is by specifying how instances should be related, using RelatedTo operators. In this case, if an instance at the top of the RelatedTo path cannot be followed to the bottom of the path via specified hops, no QueryDataSets are returned for the starting instance or any of the intermediate instances.

When querying for related instances in the RelativePath, the Client can optionally ask for References. A Reference is requested via a RelativePath that only includes a ReferenceType. If all References are desired then the root ReferenceType would be listed. These References are returned as part of the QueryDataSets.

5.9.3.2 Parameters

Table 43 defines the request parameters and Table 44 the response parameters for the QueryFirst Service.

Table 43 – QueryFirst Request Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
view
	ViewDescription
	Specifies a View and temporal context to a Server (see 7.37 for ViewDescription definition).

	
nodeTypes[]
	NodeTypeDescription
	This is the Node type description.

	

typeDefinitionNode
	ExpandedNodeId
	NodeId of the originating TypeDefinitionNode of the instances for which data is to be returned.

	

includeSubtypes
	Boolean
	A flag that indicates whether the Server should include instances of subtypes of the TypeDefinitionNode in the list of instances of the Node type.

	

dataToReturn[]
	QueryDataDescription
	Specifies an Attribute or Reference from the originating typeDefinitionNode along a given relativePath for which to return data.

	

relativePath
	RelativePath
	Browse path relative to the originating Node that identifies the Node which contains the data that is being requested, where the originating Node is an instance Node of the type defined by the type definition Node. The instance Nodes are further limited by the filter provided as part of this call. For a definition of relativePath see 7.25.

This relative path could end on a Reference, in which case the ReferenceDescription of the Reference would be returned as its value.

	

attributeId
	IntegerId
	Id of the Attribute. This shall be a valid Attribute Id. The IntegerId is defined in 7.13. The IntegerIds for the Attributes are defined in Part 6. If the RelativePath ended in a Reference then this parameter is 0 and ignored by the server.

	

indexRange
	NumericRange
	This parameter is used to identify a single element of a structure or an array, or a single range of indexes for arrays. If a range of elements are specified, the values are returned as a composite. The first element is identified by index 0 (zero). The NumericRange type is defined in 7.21.

This parameter is null if the specified Attribute is not an array or a structure. However, if the specified Attribute is an array or a structure, and this parameter is null, then all elements are to be included in the range.

	
filter
	ContentFilter
	Resulting Nodes shall be limited to the Nodes matching the criteria defined by the filter. ContentFilter is discussed in 7.4. If an empty filter is provided then the entire address space shall be examined and all Nodes that contain a matching requested Attribute or Reference are returned.

	
maxDataSetsToReturn
	Counter
	The number of QueryDataSets that the Client wants the Server to return in the response and on each subsequent continuation call response. The Server is allowed to further limit the response, but shall not exceed this limit.

A value of 0 indicates that the Client is imposing no limitation.

	
maxReferencesToReturn
	Counter
	The number of References that the Client wants the Server to return in the response for each QueryDataSet and on each subsequent continuation call response. The Server is allowed to further limit the response, but shall not exceed this limit.

A value of 0 indicates that the Client is imposing no limitation.

For example a result where 4 Nodes are being returned, but each has 100 References, if this limit were set to 50 then only the first 50 References for each Node would be returned on the initial call and a continuation point would be set indicating additional data.

Table 44 – QueryFirst Response Parameters

	Name
	Type
	Description

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
queryDataSets []
	QueryDataSet
	The array of QueryDataSet. This array is empty if no Nodes or References met the nodeTypes criteria. In this case the continuationPoint parameter shall be empty.

The QueryDataSet type is defined in 7.22.

	
continuationPoint
	ContinuationPoint
	Server-defined opaque value that identifies the continuation point.

The continuation point is used only when the Query results are too large to be returned in a single response. “Too large” in this context means that the Server is not able to return a larger response or that the number of QueryDataSets to return exceeds the maximum number of QueryDataSets to return that was specified by the Client in the request.

The continuation point is used in the QueryNext Service. When not used, the value of this parameter is null. If a continuation point is returned, the Client shall call QueryNext to get the next set of QueryDataSets or to free the resources for the continuation point in the Server.

A continuation point shall remain active until the Client passes the continuation point to QueryNext or the session is closed. If the max continuation points have been reached the oldest continuation point shall be reset.
The ContinuationPoint type is described in 7.6.

	
parsingResults[]
	ParsingResult
	List of parsing results for QueryFirst. The size and order of the list matches the size and order of the NodeTypes request parameter.

This list is populated with any status codes that are related to the processing of the node types that are part of the query. The array can be empty if no errors where encountered. If any node type encountered an error all node types shall have an associated status code.

	

statusCode
	StatusCode
	Parsing result for the requested NodeTypeDescription.

	

dataStatusCodes []
	StatusCode
	List of results for dataToReturn. The size and order of the list matches the size and order of the dataToReturn request parameter. The array can be empty if no errors where encountered.

	

dataDiagnosticInfos []
	DiagnosticInfo
	List of diagnostic information dataToReturn (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the dataToReturn request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the query request.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the requested NodeTypeDescription. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the query request.

	
filterResult
	ContentFilter

Result
	A structure that contains any errors associated with the filter.

This structure shall be empty if no errors occurred.

The ContentFilterResult type is defined in 7.4.2.

5.9.3.3 Service results

If the Query is invalid or cannot be processed, then QueryDataSets are not returned and only a Service result, filterResult, parsingResults and optional DiagnosticInfo is returned. Table 45 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 45 – QueryFirst Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_ContentFilterInvalid
	See Table 166 for the description of this result code.

	Bad_ViewIdUnknown
	See Table 165 for the description of this result code.

	Bad_ViewTimestampInvalid
	See Table 165 for the description of this result code.

	Bad_ViewParameterMismatchInvalid
	See Table 165 for the description of this result code.

	Bad_ViewVersionInvalid
	See Table 165 for the description of this result code.

	Good_ResultsMayBeIncomplete
	The server should have followed a reference to a node in a remote server but did not. The result set may be incomplete.

5.9.3.4 StatusCodes

Table 46 defines values for the parsingResults statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 46 – QueryFirst Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_NotTypeDefinition
	The provided Nodeid was not a type definition nodeid.

	Bad_AttributeIdInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeInvalid
	See Table 166 for the description of this result code.

5.9.4 QueryNext

5.9.4.1 Descriptions

This Service is used to request the next set of QueryFirst or QueryNext response information that is too large to be sent in a single response. “Too large” in this context means that the Server is not able to return a larger response or that the number of QueryDataSets to return exceeds the maximum number of QueryDataSets to return that was specified by the Client in the original request. The QueryNext shall be submitted on the same session that was used to submit the QueryFirst or QueryNext that is being continued.

5.9.4.2 Parameters

Table 47 defines the parameters for the Service.

Table 47 – QueryNext Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
releaseContinuationPoint
	Boolean
	A Boolean parameter with the following values :

TRUE
passed continuationPoint shall be reset to free resources for the continuation point in the Server.

FALSE
passed continuationPoint shall be used to get the next set of QueryDataSets.

A Client shall always use the continuation point returned by a QueryFirst or QueryNext response to free the resources for the continuation point in the Server. If the Client does not want to get the next set of Query information, QueryNext shall be called with this parameter set to TRUE.

If the parameter is set to TRUE all array parameters in the response shall contain empty arrays.

	
continuationPoint
	ContinuationPoint
	Server defined opaque value that represents the continuation point. The value of the continuation point was returned to the Client in a previous QueryFirst or QueryNext response. This value is used to identify the previously processed QueryFirst or QueryNext request that is being continued, and the point in the result set from which the browse response is to continue.
The ContinuationPoint type is described in 7.6.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
queryDataSets []
	QueryDataSet
	The array of QueryDataSets.

The QueryDataSet type is defined in 7.22.

	
revisedContinuationPoint
	ContinuationPoint
	Server-defined opaque value that represents the continuation point. It is used only if the information to be returned is too large to be contained in a single response. When not used or when releaseContinuationPoint is set, the value of this parameter is null.
The ContinuationPoint type is described in 7.6.

5.9.4.3 Service results

Table 48 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 48 – QueryNext Service Result Codes

	Symbolic Id
	Description

	Bad_ContinuationPointInvalid
	See Table 166 for the description of this result code.

5.10 Attribute Service Set

5.10.1 Overview

This Service Set provides Services to access Attributes that are part of Nodes.

5.10.2 Read

5.10.2.1 Description

This Service is used to read one or more Attributes of one or more Nodes. For constructed Attribute values whose elements are indexed, such as an array, this Service allows Clients to read the entire set of indexed values as a composite, to read individual elements or to read ranges of elements of the composite.

The maxAge parameter is used to direct the Server to access the value from the underlying data source, such as a device, if its copy of the data is older than that which the maxAge specifies. If the Server cannot meet the requested max age, it returns its “best effort” value rather than rejecting the request.

5.10.2.2 Parameters

Table 49 defines the parameters for the Service.

Table 49 – Read Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
maxAge
	Duration
	Maximum age of the value to be read in milliseconds. The age of the value is based on the difference between the ServerTimestamp and the time when the Server starts processing the request. For example if the Client specifies a maxAge of 500 milliseconds and it takes 100 milliseconds until the Server starts processing the request, the age of the returned value could be 600 milliseconds prior to the time it was requested.

If the Server has one or more values of an Attribute that are within the maximum age, it can return any one of the values or it can read a new value from the data source. The number of values of an Attribute that a Server has depends on the number of MonitoredItems that are defined for the Attribute. In any case, the Client can make no assumption about which copy of the data will be returned.

If the Server does not have a value that is within the maximum age, it shall attempt to read a new value from the data source.

If the Server cannot meet the requested maxAge, it returns its “best effort” value rather than rejecting the request. This may occur when the time it takes the Server to process and return the new data value after it has been accessed is greater than the specified maximum age.

If maxAge is set to 0, the Server shall attempt to read a new value from the data source.

If maxAge is set to the max Int32 value or greater, the Server shall attempt to get a cached value.

Negative values are invalid for maxAge.

	
timestampsTo
Return
	enum

TimestampsTo Return
	An enumeration that specifies the Timestamps to be returned for each requested Variable Value Attribute. The TimestampsToReturn enumeration is defined in 7.34.

	
nodesToRead []
	ReadValueId
	List of Nodes and their Attributes to read. For each entry in this list, a StatusCode is returned, and if it indicates success, the Attribute Value is also returned. The ReadValueId parameter type is defined in 7.23.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	DataValue
	List of Attribute values (see 7.7 for DataValue definition). The size and order of this list matches the size and order of the nodesToRead request parameter. There is one entry in this list for each Node contained in the nodesToRead parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information (see 7.8 for DiagnosticInfo definition). The size and order of this list matches the size and order of the nodesToRead request parameter. There is one entry in this list for each Node contained in the nodesToRead parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.10.2.3 Service results

Table 50 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 50 – Read Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_MaxAgeInvalid
	The max age parameter is invalid.

	Bad_TimestampsToReturnInvalid
	See Table 165 for the description of this result code.

5.10.2.4 StatusCodes

Table 51 defines values for the operation level statusCode contained in the DataValue structure of each values element. Common StatusCodes are defined in Table 166.

Table 51 – Read Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_AttributeIdInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeNoData
	See Table 166 for the description of this result code.

	Bad_DataEncodingInvalid
	See Table 166 for the description of this result code.

	Bad_DataEncodingUnsupported
	See Table 166 for the description of this result code.

	Bad_NotReadable
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

5.10.3 HistoryRead

5.10.3.1 Description

This Service is used to read historical values or Events of one or more Nodes. For constructed Attribute values whose elements are indexed, such as an array, this Service allows Clients to read the entire set of indexed values as a composite, to read individual elements or to read ranges of elements of the composite. Servers may make historical values available to Clients using this Service, although the historical values themselves are not visible in the AddressSpace.

The AccessLevel Attribute defined in Part 3 indicates a Node’s support for historical values. Several request parameters indicate how the Server is to access values from the underlying history data source. The EventNotifier Attribute defined in Part 3 indicates a Node’s support for historical Events.

The continuationPoint parameter in the HistoryRead is used to mark a point from which to continue the read if not all values could be returned in one response. The value is opaque for the Client and is only used to maintain the state information for the Server to continue from. A Server may use the timestamp of the last returned data item if the timestamp is unique. This can reduce the need in the Server to store state information for the continuation point.

For additional details on reading historical data and historical Events see Part 11.

5.10.3.2 Parameters

Table 52 defines the parameters for the Service.

Table 52 – HistoryRead ServiceParameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
historyReadDetails
	Extensible Parameter
HistoryReadDetails
	The details define the types of history reads that can be performed. The HistoryReadDetails parameter type is an extensible parameter type formally defined in Part 11. The ExtensibleParameter type is defined in 7.11.

	
timestampsToReturn
	enum

TimestampsTo Return
	An enumeration that specifies the timestamps to be returned for each requested Variable Value Attribute. The TimestampsToReturn enumeration is defined in 7.34.

Specifying a TimestampsToReturn of NEITHER is not valid. A Server shall return a Bad_InvalidTimestampArgument StatusCode in this case.

	
releaseContinuation
Points
	Boolean
	A Boolean parameter with the following values :

TRUE
passed continuationPoints shall be reset to free resources in the Server.

FALSE
passed continuationPoints shall be used to get the next set of historical information.

A Client shall always use the continuation point returned by a HistoryRead response to free the resources for the continuation point in the Server. If the Client does not want to get the next set of historical information, HistoryRead shall be called with this parameter set to TRUE.

	
nodesToRead []
	HistoryReadValueId
	This parameter contains the list of items upon which the historical retrieval is to be performed.

	

nodeId
	NodeId
	If the HistoryReadDetails is RAW, PROCESSED, MODIFIED or ATTIME:

The nodeId of the Nodes whose historical values are to be read. The value returned shall always include a timestamp.

If the HistoryReadDetails is EVENTS:

The NodeId of the Node whose Event history is to be read.

If the Node does not support the requested access for historical values or historical Events the appropriate error response for the given Node shall be generated.

	

indexRange
	NumericRange
	This parameter is used to identify a single element of an array, or a single range of indexes for arrays. If a range of elements is specified, the values are returned as a composite. The first element is identified by index 0 (zero). The NumericRange type is defined in 7.21.

This parameter is null if the value is not an array. However, if the value is an array, and this parameter is null, then all elements are to be included in the range.

	

dataEncoding
	QualifiedName
	A QualifiedName that specifies the data encoding to be returned for the Value to be read (see 7.23 for definition how to specify the data encoding).
The parameter is ignored when reading history of Events.

	

continuationPoint
	ByteString
	For each NodeToRead this parameter specifies a continuation point returned from a previous HistoryRead call, allowing the Client to continue that read from the last value received.

The HistoryRead is used to select an ordered sequence of historical values or events. A continuation point marks a point in that ordered sequence, such that the Server returns the subset of the sequence that follows that point.

A null value indicates that this parameter is not used.

This continuation point is described in more detail in Part 11.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader type).

	
results []
	HistoryReadResult
	List of read results. The size and order of the list matches the size and order of the nodesToRead request parameter.

	

statusCode
	StatusCode
	StatusCode for the NodeToRead (see 7.33 for StatusCode definition).

	

continuationPoint
	ByteString
	This parameter is used only if the number of values to be returned is too large to be returned in a single response.

When this parameter is not used, its value is null.

Servers shall support at least one continuation point per Session. Servers specify a max history continuation points per Session in the Server capabilities Object defined in Part 5. A continuation point shall remain active until the Client passes the continuation point to HistoryRead or the Session is closed. If the max continuation points have been reached the oldest continuation point shall be reset.

	

historyData
	Extensible Parameter
HistoryData
	The history data returned for the Node.

The HistoryData parameter type is an extensible parameter type formally defined in Part 11. It specifies the types of history data that can be returned. The ExtensibleParameter base type is defined in 7.11.

	
diagnosticInfos []
	Diagnostic Info
	List of diagnostic information. The size and order of the list matches the size and order of the nodesToRead request parameter. There is one entry in this list for each Node contained in the nodesToRead parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.10.3.3 Service results

Table 53 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 53 – HistoryRead Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_TimestampsToReturnInvalid
	See Table 165 for the description of this result code.

	Bad_HistoryOperationInvalid
	See Table 166 for the description of this result code.

	Bad_HistoryOperationUnsupported
	See Table 166 for the description of this result code.

5.10.3.4 StatusCodes

Table 54 defines values for the operation level statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166. History access specific StatusCodes are defined in Part 11.
Table 54 – HistoryRead Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_DataEncodingInvalid
	See Table 166 for the description of this result code.

	Bad_DataEncodingUnsupported
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_ContinuationPointInvalid
	See Table 165 for the description of this result code.

	Bad_InvalidTimestampArgument
	The defined timestamp to return was invalid.

5.10.4 Write

5.10.4.1 Description

This Service is used to write values to one or more Attributes of one or more Nodes. For constructed Attribute values whose elements are indexed, such as an array, this Service allows Clients to write the entire set of indexed values as a composite, to write individual elements or to write ranges of elements of the composite.

The values are written to the data source, such as a device, and the Service does not return until it writes the values or determines that the value cannot be written. In certain cases, the Server will successfully write to an intermediate system or Server, and will not know if the data source was updated properly. In these cases, the Server should report a success code that indicates that the write was not verified. In the cases where the Server is able to verify that it has successfully written to the data source, it reports an unconditional success.

It is possible that the Server may successfully write some Attributes, but not others. Rollback is the responsibility of the Client.
If a Server allows writing of Attributes with the DataType LocalizedText, the Client can add or overwrite the text for a locale by writing the text with the associated LocaleId. Writing a null String for a locale shall delete the String for that locale. Writing a null String for the text and a null String for the LocaleId shall delete the entries for all locales.
5.10.4.2 Parameters

Table 55 defines the parameters for the Service.

Table 55 – Write Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
nodesToWrite []
	WriteValue
	List of Nodes and their Attributes to write.

	

nodeId
	NodeId
	NodeId of the Node that contains the Attributes.

	

attributeId
	IntegerId
	Id of the Attribute. This shall be a valid Attribute id. The IntegerId is defined in 7.13. The IntegerIds for the Attributes are defined in Part 6.

	

indexRange
	NumericRange
	This parameter is used to identify a single element of an array, or a single range of indexes for arrays. The first element is identified by index 0 (zero). The NumericRange type is defined in 7.21.

This parameter is not used if the specified Attribute is not an array. However, if the specified Attribute is an array and this parameter is not used, then all elements are to be included in the range. The parameter is null if not used.

	

value
	DataValue
	The Node’s Attribute value (see 7.7 for DataValue definition).

If the indexRange parameter is specified then the Value shall be an array even if only one element is being written.

If the SourceTimestamp or the ServerTimestamp is specified, the Server shall use these values. The Server returns a Bad_WriteNotSupported error if it does not support writing of timestamps.
A Server shall return a Bad_TypeMismatch error if the data type of value is not the same as or a subtype of datatype for the Attribute.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of results for the Nodes to write (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the nodesToWrite request parameter. There is one entry in this list for each Node contained in the nodesToWrite parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the Nodes to write (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the nodesToWrite request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.10.4.3 Service results

Table 56 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 56 – Write Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.10.4.4 StatusCodes

Table 57 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 57 – Write Operation Level Result Codes

	Symbolic Id
	Description

	Good_CompletesAsynchronously
	See Table 165 for the description of this result code.

The value was successfully written to an intermediate system but the Server does not know if the data source was updated properly.

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_AttributeIdInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeNoData
	See Table 166 for the description of this result code.

	Bad_WriteNotSupported
	The requested write operation is not supported.
If a Client attempts to write any value, quality, timestamp combination and the Server does not support the requested combination (which could be a single quantity such as just timestamp), then the Server shall not perform any write on this Node and shall return this StatusCode for this Node.

	Bad_NotWritable
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

The current user does not have permission to write the attribute.

	Bad_OutOfRange
	See Table 166 for the description of this result code.

	Bad_TypeMismatch
	See Table 166 for the description of this result code.

5.10.5 HistoryUpdate

5.10.5.1 Description

This Service is used to update historical values or Events of one or more Nodes. Several request parameters indicate how the Server is to update the historical value or Event. Valid actions are Insert, Replace or Delete.

5.10.5.2 Parameters

Table 58 defines the parameters for the Service.

Table 58 – HistoryUpdate Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
historyUpdateDetails []
	Extensible Parameter
HistoryUpdate
Details
	The details defined for this update. The HistoryUpdateDetails parameter type is an extensible parameter type formally defined in Part 11. It specifies the types of history updates that can be performed. The ExtensibleParameter type is defined in 7.11.

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	HistoryUpdate Result
	List of update results for the history update details. The size and order of the list matches the size and order of the details element of the historyUpdateDetails parameter specified in the request.

	

statusCode
	StatusCode
	StatusCode for the update of the Node (see 7.33 for StatusCode definition).

	

operationResults []
	StatusCode
	List of StatusCodes for the operations to be performed on a Node. The size and order of the list matches the size and order of any list defined by the details element being reported by this updateResults entry.

	

diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the operations to be performed on a Node (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of any list defined by the details element being reported by this updateResults entry. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the history update details. The size and order of the list matches the size and order of the details element of the historyUpdateDetails parameter specified in the request. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.10.5.3 Service results

Table 59 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 59 – HistoryUpdate Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.10.5.4 StatusCodes

Table 60 defines values for the statusCode and operationResult parameters that are specific to this Service. Common StatusCodes are defined in Table 166. History access specific StatusCodes are defined in Part 11.
Table 60 – HistoryUpdate Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NotWritable
	See Table 166 for the description of this result code.

	Bad_HistoryOperationInvalid
	See Table 166 for the description of this result code.

	Bad_HistoryOperationUnsupported
	See Table 166 for the description of this result code.

5.11 Method Service Set

5.11.1 Overview

Methods represent the function calls of Objects. They are defined in Part 3. Methods are invoked and return only after completion (successful or unsuccessful). Execution times for methods may vary, depending on the function that they perform.

The Method Service Set defines the means to invoke methods. A method shall be a component of an Object. Discovery is provided through the Browse and Query Services. Clients discover the methods supported by a Server by browsing for the owning Objects References that identify their supported methods.
Because Methods may control some aspect of plant operations, method invocation may depend on environmental or other conditions. This may be especially true when attempting to re-invoke a method immediately after it has completed execution. Conditions that are required to invoke the method might not yet have returned to the state that permits the method to start again.

5.11.2 Call

5.11.2.1 Description

This Service is used to call (invoke) a list of Methods. Each method call is invoked within the context of an existing Session. If the Session is terminated, the results of the method’s execution cannot be returned to the Client and are discarded. This is independent of the task actually performed at the Server.

This Service provides for passing input and output arguments to/from a method. These arguments are defined by Properties of the method.

5.11.2.2 Parameters

Table 61 defines the parameters for the Service.

Table 61 – Call Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
methodsToCall []
	CallMetthodRequest
	List of Methods to call.

	

objectId
	NodeId
	The NodeId shall be that of the Object or ObjectType that is the source of a HasComponent Reference (or subtype of HasComponent Reference) to this Method.
See Part 3 for a description of Objects and their Methods.

	

methodId
	NodeId
	NodeId of the Method to invoke.

	

inputArguments []
	BaseDataType
	List of input argument values. An empty list indicates that there are no input arguments. The size and order of this list matches the size and order of the input arguments defined by the input InputArguments Property of the Method.

The name, a description and the data type of each argument are defined by the Argument structure in each element of the method’s InputArguments Property.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	CallMethodResult
	Result for the Method calls.

	

statusCode
	StatusCode
	StatusCode of the Method executed in the server. This StatusCode is set to the Bad_InvalidArgument StatusCode if at least one input argument broke a constraint (e.g. wrong data type, value out of range).

This StatusCode is set to a bad StatusCode if the Method execution failed in the server, e.g. based on an exception or an HRESULT.

	

inputArgumentResults []
	StatusCode
	List of StatusCodes for each inputArgument.

	

inputArgumentDiagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for each inputArgument. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

	

outputArguments []
	BaseDataType
	List of output argument values. An empty list indicates that there are no output arguments. The size and order of this list matches the size and order of the output arguments defined by the OutputArguments Property of the Method.

The name, a description and the data type of each argument are defined by the Argument structure in each element of the methods OutputArguments Property.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the StatusCode of the callResult. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.11.2.3 Service results

Table 62 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 62 – Call Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.11.2.4 StatusCodes

Table 60 defines values for the statusCode and operationResult parameters that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 63 – Call Operation Level Result Codes

	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.
Used to indicate that the specified object is not valid.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

Used to indicate that the specified object is not valid.

	Bad_ArgumentsMissing
	The client did not specify all of the input arguments for the method.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_MethodInvalid
	The method id does not refer to a method for the specified object.

	Bad_OutOfRange
	See Table 166 for the description of this result code.
Used to indicate that an input argument is outside the acceptable range.

	Bad_TypeMismatch
	See Table 166 for the description of this result code.
Used to indicate that an input argument does not have the correct data type.

5.12 MonitoredItem Service Set

5.12.1 MonitoredItem model

5.12.1.1 Overview

Clients define MonitoredItems to subscribe to data and Events. Each MonitoredItem identifies the item to be monitored and the Subscription to use to send Notifications. The item to be monitored may be any Node Attribute.

Notifications are data structures that describe the occurrence of data changes and Events. They are packaged into NotificationMessages for transfer to the Client. The Subscription periodically sends NotificationMessages at a user-specified publishing interval, and the cycle during which these messages are sent is called a publishing cycle.

Four primary parameters are defined for MonitoredItems that tell the Server how the item is to be sampled, evaluated and reported. These parameters are the sampling interval, the monitoring mode, the filter and the queue parameter. Figure 15 illustrates these concepts.

[image: image15.emf]

Reporting may be enabled or disabled for the subscription .

Monitored Item

Monitored Item

Monitored Item

Attribute

Variable

Node

The sampl ing interval defines the cyclic rate used by the server to sample the real item.

 Subscription

The monito ring mode defines whether sampling and reporting of n otifications is enabled or disabled

Filters are used to select samples or events to report

 f

 f

 f

A monitored item may monitor a n attribute , a value , or a node providing even ts

Queue attributes describe the queueing of n otifications to a subscription

Figure 15 – MonitoredItem Model

Attributes, other than the Value Attribute, are only monitored for a change in value. The filter is not used for these Attributes. Any change in value for these Attributes causes a Notification to be generated.

The Value Attribute is used when monitoring Variables. Variable values are monitored for a change in value or a change in their status. The filters defined in this specification (see 7.16.2) and in Part 8 are used to determine if the value change is large enough to cause a Notification to be generated for the Variable.

Objects and views can be used to monitor Events. Events are only available from Nodes where the SubscribeToEvents bit of the EventNotifier Attribute is set. The filter defined in this specification (see 7.16.3) is used to determine if an Event received from the Node is sent to the Client. The filter also allows selecting fields of the EventType that will be contained in the Event such as EventId, EventType, SourceNode, Time and Description.

Part 3 describes the Event model and the base EventTypes.

The Properties of the base EventTypes and the representation of the base EventTypes in the AddressSpace are specified in Part 5.
5.12.1.2 Sampling interval

Each MonitoredItem created by the Client is assigned a sampling interval that is either inherited from the publishing interval of the Subscription or that is defined specifically to override that rate. The sampling interval indicates the fastest rate at which the Server should sample its underlying source for data changes.

A Client shall define a sampling interval of 0 if it subscibes for Events.

The assigned sampling interval defines a “best effort” cyclic rate that the Server uses to sample the item from its source. “Best effort” in this context means that the Server does its best to sample at this rate. Sampling at rates faster than this rate is acceptable, but not necessary to meet the needs of the Client. How the Server deals with the sampling rate and how often it actually polls its data source internally is a Server implementation detail. However the time between values returned to the Client shall be greater or equal to the sampling interval.

The Client may also specify 0 for the sampling interval, which indicates that the Server should use the fastest practical rate. It is expected that Servers will support only a limited set of sampling intervals to optimize their operation. If the exact interval requested by the Client is not supported by the Server, then the Server assigns to the MonitoredItem the most appropriate interval as determined by the Server. It returns this assigned interval to the Client. The Server Capabilities Object defined in Part 5 identifies the sampling intervals supported by the Server.

The Server may support data that is collected based on a sampling model or generated based on an exception-based model. The fastest supported sampling interval may be equal to 0, which indicates that the data item is exception-based rather than being sampled at some period. Exception-based means that the underlying system does not require sampling and reports changes of the data.
The Client may use the revised sampling interval values as a hint for setting the publishing interval as well as the keep alive count of a Subscription. If, for example, the smallest revised sampling interval of the MonitoredItems is 5 seconds, then the time before a keep-alive is sent should be longer than 5 seconds.

Note that, in many cases, the OPC UA Server provides access to a decoupled system and therefore has no knowledge of the data update logic. In this case, even though the OPC UA Server samples at the negotiated rate, the data might be updated by the underlying system at a much slower rate. In this case, changes can only be detected at this slower rate.

If the behaviour by which the underlying system updates the item is known, it will be available via the MinimumSamplingInterval Attribute defined in Part 3. If the Server specifies a value for the MinimumSamplingInterval Attribute it shall always return a revisedSamplingInterval that is equal or higher than the MinimumSamplingInterval if the Client subscribes to the Value Attribute.
Clients should also be aware that the sampling by the OPC UA Server and the update cycle of the underlying system are usually not synchronized. This can cause additional delays in change detection, as illustrated in Figure 16.

[image: image16.wmf]

Time axis

(seconds)

0

10

20

30

40

Actual change occurs at “1

2

”

Update Cycle of

underlying system

(every 1

5

 seconds)

Sampling

 (every

10 seconds)

Change detected via

sampling at

”

28

”.

Figure 16 – Typical delay in change detection.

5.12.1.3 Monitoring mode

The monitoring mode parameter is used to enable and disable the sampling of a MonitoredItem, and also to provide for independently enabling and disabling the reporting of Notifications. This capability allows a MonitoredItem to be configured to sample, sample and report, or neither. Disabling sampling does not change the values of any of the other MonitoredItem parameter, such as its sampling interval.
When a MonitoredItem is enabled (i.e. when the MonitoringMode is changed from DISABLED to SAMPLING or REPORTING) or it is created in the enabled state, the Server shall report the first sample as soon as possible and the time of this sample becomes the starting point for the next sampling interval.
5.12.1.4 Filter

Each time a MonitoredItem is sampled, the Server evaluates the sample using the filter defined for the MonitoredItem. The filter parameter defines the criteria that the Server uses to determine if a Notification should be generated for the sample. The type of filter is dependent on the type of the item that is being monitored. For example, the DataChangeFilter and the AggregateFilter are used when monitoring Variable Values and the EventFilter is used when monitoring Events. Sampling and evaluation, including the use of filters, are described in this specification. Additional filters may be defined in other parts of this multi-part specification.

5.12.1.5 Queue parameters
If the sample passes the filter criteria, a Notification is generated and queued for transfer by the Subscription. The size of the queue is defined when the MonitoredItem is created. When the queue is full and a new Notification is received, the Server either discards the oldest Notification and queues the new one, or it simply discards the new one. The MonitoredItem is configured for one of these discard policies when the MonitoredItem is created. If a Notification is discarded for a DataValue, the Overflow bit in the InfoBits portion of the DataValue statusCode is set.

If the queue size is one and if the discard policy is to discard the oldest, the queue becomes a buffer that always contains the newest Notification. In this case, if the sampling interval of the MonitoredItem is faster than the publishing interval of the Subscription, the MonitoredItem will be over sampling and the Client will always receive the most up-to-date value.

On the other hand, the Client may want to subscribe to a continuous stream of Notifications without any gaps, but does not want them reported at the sampling interval. In this case, the MonitoredItem would be created with a queue size large enough to hold all Notifications generated between two consecutive publishing cycles. Then, at each publishing cycle, the Subscription would send all Notifications queued for the MonitoredItem to the Client. The Server shall return Notifications for any particular item in the same order they are in the queue.

The Server may be sampling at a faster rate than the sampling interval to support other Clients; the Client should only expect values at the negotiated sampling interval. The Server may deliver fewer values than dictated by the sampling interval, based on the filter and implementation constraints. If a DataChangeFilter is configured for a MonitoredItem, it is always applied to the newest value in the queue compared to the current sample.

If, for example, the AbsoluteDeadband in the DataChangeFilter is “10”, the queue could consist of values in the following order:

· 100

· 111

· 101

· 89

· 100

Queuing of data may result in unexpected behaviour when using a Deadband filter and the number of encountered changes is larger than the number of values that can be maintained. It is realistically possible that, due to the discard policy “discardOldest=TRUE”, the new first value in the queue may not exceed the Deadband limit of the previous value sent to the Client.

The queue size is the maximum value supported by the Server when monitoring Events. In this case, the Server is responsible for the Event buffer. If Events are lost, an Event of the type EventQueueOverflow is generated, placed at the beginning of the queue and is never discarded.

5.12.1.6 Triggering model

The MonitoredItems Service allows adding items that are reported only when some other item (the triggering item) triggers. This is done by creating links between the triggered items and the items to report. The monitoring mode of the items to report is set to sampling-only so that it will sample and queue Notifications without reporting them. Figure 17 illustrates this concept.

[image: image17.emf]

Monitored Item

Items to Report are monitored items whose notifications are sent when the triggering item triggers. Their lifetime is independent of the lifetime of the triggered items that r eference them.

Monitored Item

Monitored Item

Monitored Item

Triggering item defines a set of triggered items

Trigger ing links link the triggering item with items to report . The se links are defined for the triggering item and are deleted when the t r iggering item is deleted.

Figure 17 – Triggering Model

The triggering mechanism is a useful feature that allows Clients to reduce the data volume on the wire by configuring some items to sample frequently but only report when some other Event happens.

The following triggering behaviours are specified:

f) The monitoring mode of the triggering item indicates that reporting is disabled. In this case, the triggering item is not reported when the triggering item triggers.

g) The monitoring mode of the triggering item indicates that reporting is enabled. In this case, the triggering item is reported when the triggering item triggers.

h) The monitoring mode of the item to report indicates that reporting is disabled. In this case, the item to report is reported when the triggering item triggers.

i) The monitoring mode of the item to report indicates that reporting is enabled. In this case, the item to report is reported only once (when the item to report triggers), effectively causing the triggering item to be ignored.

Clients create and delete triggering links between a triggering item and a set of items to report. If the MonitoredItem that represents an item to report is deleted before its associated triggering link is deleted, the triggering link is also deleted, but the triggering item is otherwise unaffected.

Deletion of a MonitoredItem should not be confused with the removal of the Attribute that it monitors. If the Node that contains the Attribute being monitored is deleted, the MonitoredItem generates a Notification with a StatusCode Bad_UnknownNodeId that indicates the deletion, but the MonitoredItem is not deleted.

5.12.2 CreateMonitoredItems

5.12.2.1 Description

This Service is used to create and add one or more MonitoredItems to a Subscription. A MonitoredItem is deleted automatically by the Server when the Subscription is deleted. Deleting a MonitoredItem causes its entire set of triggered item links to be deleted, but has no effect on the MonitoredItems referenced by the triggered items.

Calling the CreateMonitoredItems Service repetitively to add a small number of MonitoredItems each time may adversely affect the performance of the Server. Instead, Clients should add a complete set of MonitoredItems to a Subscription whenever possible.

When a MonitoredItem is added, the Server performs initialization processing for it. The initialization processing is defined by the Notification type of the item being monitored. Notification types are specified in this specification and in the Access Type Specification Parts of this multi-part specification, such as Part 8. See Clause 4 of Part 1 for a description of the Access Type Parts.
When a user adds a monitored item that the user is denied read access to, the add operation for the item shall succeed and the bad status Bad_NotReadable or Bad_UserAccessDenied shall be returned in the Publish response. This is the same behaviour for the case where the access rights are changed after the call to CreateMonitoredItem. If the access rights change to read rights, the Server shall start sending data for the MonitoredItem.

The return diagnostic info setting in the request header of the CreateMonitoredItems or the last ModifyMonitoredItems Service is applied to the Monitored Items and is used as the diagnostic information settings when sending Notifications in the Publish response.
5.12.2.2 Parameters

Table 64 defines the parameters for the Service.

Table 64 – CreateMonitoredItems Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription that will report Notifications for this MonitoredItem (see 7.13 for IntegerId definition).

	
timestampsToReturn
	enum

Timestamps ToReturn
	An enumeration that specifies the timestamp Attributes to be transmitted for each MonitoredItem. The TimestampsToReturn enumeration is defined in 7.34.

When monitoring Events, this applies only to Event fields that are of type DataValue.

	
itemsToCreate []
	MonitoredItem CreateRequest
	A list of MonitoredItems to be created and assigned to the specified Subscription.

	

itemToMonitor
	ReadValueId
	Identifies an item in the AddressSpace to monitor. To monitor for Events, the attributeId element of the ReadValueId structure is the id of the EventNotifier Attribute. The ReadValueId type is defined in 7.23.

	

monitoringMode
	enum

MonitoringMode
	The monitoring mode to be set for the MonitoredItem. The MonitoringMode enumeration is defined in 7.17.

	

requestedParameters
	Monitoring Parameters
	The requested monitoring parameters. Servers negotiate the values of these parameters based on the Subscription and the capabilities of the Server. The MonitoringParameters type is defined in 7.15.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	MonitoredItem CreateResult
	List of results for the MonitoredItems to create. The size and order of the list matches the size and order of the itemsToCreate request parameter.

	

statusCode
	StatusCode
	StatusCode for the MonitoredItem to create (see 7.33 for StatusCode definition).

	

monitoredItemId
	IntegerId
	Server-assigned id for the MonitoredItem (see 7.13 for IntegerId definition). This id is unique within the Subscription, but might not be unique within the Server or Session. This parameter is present only if the statusCode indicates that the MonitoredItem was successfully created.

	

revisedSampling

Interval
	Duration
	The actual sampling interval that the Server will use.

This value is based on a number of factors, including capabilities of the underlying system. The Server shall always return a revisedSamplingInterval that is equal or higher than the requestedSamplingInterval. If the requestedSamplingInterval is higher than the maximum sampling interval supported by the Server, the maximum sampling interval is returned.

	

revisedQueueSize
	Counter
	The actual queue size that the Server will use.

	

filterResult
	Extensible Parameter
MonitoringFilterResult
	Contains any revised parameter values or error results associated with the MonitoringFilter specified in the request. This parameter may be omitted if no errors occurred. The MonitoringFilterResult parameter type is an extensible parameter type specified in 7.16.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the MonitoredItems to create (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the itemsToCreate request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.12.2.3 Service results

Table 65 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 65 – CreateMonitoredItems Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_TimestampsToReturnInvalid
	See Table 165 for the description of this result code.

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

5.12.2.4 StatusCodes

Table 66 defines values for the operation level statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 66 – CreateMonitoredItems Operation Level Result Codes

	Symbolic Id
	Description

	Bad_MonitoringModeInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_AttributeIdInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeInvalid
	See Table 166 for the description of this result code.

	Bad_IndexRangeNoData
	See Table 166 for the description of this result code.

	Bad_DataEncodingInvalid
	See Table 166 for the description of this result code.

	Bad_DataEncodingUnsupported
	See Table 166 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.

	Bad_MonitoredItemFilterInvalid
	See Table 166 for the description of this result code.

	Bad_MonitoredItemFilterUnsupported
	See Table 166 for the description of this result code.

	Bad_FilterNotAllowed
	See Table 165 for the description of this result code.

5.12.3 ModifyMonitoredItems

5.12.3.1 Description

This Service is used to modify MonitoredItems of a Subscription. Changes to the sampling interval and filter take effect at the beginning of the next sampling interval (the next time the sampling timer expires).
The return diagnostic info setting in the request header of the CreateMonitoredItems or the last ModifyMonitoredItems Service is applied to the Monitored Items and is used as the diagnostic information settings when sending Notifications in the Publish response.
5.12.3.2 Parameters

Table 67 defines the parameters for the Service.

Table 67 – ModifyMonitoredItems Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription used to qualify the monitoredItemId (see 7.13 for IntegerId definition).

	
timestampsToReturn
	enum

Timestamps ToReturn
	An enumeration that specifies the timestamp Attributes to be transmitted for each MonitoredItem to be modified. The TimestampsToReturn enumeration is defined in 7.34. When monitoring Events, this applies only to Event fields that are of type DataValue.

	
itemsToModify []
	MonitoredItemModifyRequest
	The list of MonitoredItems to modify.

	

monitoredItemId
	IntegerId
	Server-assigned id for the MonitoredItem.

	

requestedParameters
	Monitoring Parameters
	The requested values for the monitoring parameters. The MonitoringParameters type is defined in 7.15.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	MonitoredItemModifyResult
	List of results for the MonitoredItems to modify. The size and order of the list matches the size and order of the itemsToModify request parameter.

	

statusCode
	StatusCode
	StatusCode for the MonitoredItem to be modified (see 7.33 for StatusCode definition).

	

revisedSampling

Interval
	Duration
	The actual sampling interval that the Server will use. The Server returns the value it will actually use for the sampling interval. This value is based on a number of factors, including capabilities of the underlying system.
The Server shall always return a revisedSamplingInterval that is equal or higher than the requestedSamplingInterval. If the requestedSamplingInterval is higher than the maximum sampling interval supported by the Server, the maximum sampling interval is returned.

	

revisedQueueSize
	Counter
	The actual queue size that the Server will use.

	

filterResult
	Extensible Parameter
MonitoringFilterResult
	Contains any revised parameter values or error results associated with the MonitoringFilter specified in the request. This parameter may be omitted if no errors occurred. The MonitoringFilterResult parameter type is an extensible parameter type specified in 7.16.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the MonitoredItems to modify (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the itemsToModify request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.12.3.3 Service results

Table 68 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 68 – ModifyMonitoredItems Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_TimestampsToReturnInvalid
	See Table 165 for the description of this result code.

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

5.12.3.4 StatusCodes

Table 69 defines values for the operation level statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 69 – ModifyMonitoredItems Operation Level Result Codes

	Symbolic Id
	Description

	Bad_MonitoredItemIdInvalid
	See Table 166 for the description of this result code.

	Bad_MonitoredItemFilterInvalid
	See Table 166 for the description of this result code.

	Bad_MonitoredItemFilterUnsupported
	See Table 166 for the description of this result code.

	Bad_FilterNotAllowed
	See Table 165 for the description of this result code.

5.12.4 SetMonitoringMode

5.12.4.1 Description

This Service is used to set the monitoring mode for one or more MonitoredItems of a Subscription. Setting the mode to DISABLED causes all queued Notifications to be deleted.

5.12.4.2 Parameters

Table 70 defines the parameters for the Service.

Table 70 – SetMonitoringMode Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription used to qualify the monitoredItemIds (see 7.13 for IntegerId definition).

	
monitoringMode
	enum

MonitoringMode
	The monitoring mode to be set for the MonitoredItems. The MonitoringMode enumeration is defined in 7.17.

	
monitoredItemIds []
	IntegerId
	List of Server-assigned ids for the MonitoredItems.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the MonitoredItems to enable/disable (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the monitoredItemIds request parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the MonitoredItems to enable/disable (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the monitoredItemIds request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.12.4.3 Service results

Table 71 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 71 – SetMonitoringMode Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

	Bad_MonitoringModeInvalid
	See Table 166 for the description of this result code.

5.12.4.4 StatusCodes

Table 72 defines values for the operation level statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 72 – SetMonitoringMode Operation Level Result Codes

	Value
	Description

	Bad_MonitoredItemIdInvalid
	See Table 166 for the description of this result code.

5.12.5 SetTriggering

5.12.5.1 Description

This Service is used to create and delete triggering links for a triggering item. The triggering item and the items to report shall belong to the same Subscription.

Each triggering link links a triggering item to an item to report. Each link is represented by the MonitoredItem id for the item to report. An error code is returned if this id is invalid.

5.12.5.2 Parameters

Table 73 defines the parameters for the Service.

Table 73 – SetTriggering Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription that contains the triggering item and the items to report (see 7.13 for IntegerId definition).

	
triggeringItemId
	IntegerId
	Server-assigned id for the MonitoredItem used as the triggering item.

	
linksToAdd []
	IntegerId
	The list of Server-assigned ids of the items to report that are to be added as triggering links.

	
linksToRemove []
	IntegerId
	The list of Server-assigned ids of the items to report for the triggering links to be deleted.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
addResults []
	StatusCode
	List of StatusCodes for the items to add (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the linksToAdd parameter specified in the request.

	
addDiagnosticInfos []
	Diagnostic Info
	List of diagnostic information for the links to add (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the linksToAdd request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

	
removeResults []
	StatusCode
	List of StatusCodes for the items to delete. The size and order of the list matches the size and order of the linksToDelete parameter specified in the request.

	
removeDiagnosticInfos []
	Diagnostic Info
	List of diagnostic information for the links to delete. The size and order of the list matches the size and order of the linksToDelete request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.12.5.3 Service results

Table 74 defines the Service results specific to this Service. Common StatusCodes are defined in 7.33.

Table 74 – SetTriggering Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

	Bad_MonitoredItemIdInvalid
	See Table 166 for the description of this result code.

5.12.5.4 StatusCodes

Table 75 defines values for the results parameters that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 75 – SetTriggering Operation Level Result Codes

	Symbolic Id
	Description

	Bad_MonitoredItemIdInvalid
	See Table 166 for the description of this result code.

5.12.6 DeleteMonitoredItems

5.12.6.1 Description

This Service is used to remove one or more MonitoredItems of a Subscription. When a MonitoredItem is deleted, its triggered item links are also deleted.

Successful removal of a MonitoredItem, however, might not remove Notifications for the MonitoredItem that are in the process of being sent by the Subscription. Therefore, Clients may receive Notifications for the MonitoredItem after they have received a positive response that the MonitoredItem has been deleted.

5.12.6.2 Parameters

Table 76 defines the parameters for the Service.

Table 76 – DeleteMonitoredItems Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription that contains the MonitoredItems to be deleted (see 7.13 for IntegerId definition).

	
monitoredItemIds []
	IntegerId
	List of Server-assigned ids for the MonitoredItems to be deleted.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the MonitoredItems to delete (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the monitoredItemIds request parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the MonitoredItems to delete (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the monitoredItemIds request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.12.6.3 Service results

Table 77 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 77 – DeleteMonitoredItems Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

5.12.6.4 StatusCodes

Table 78 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 78 – DeleteMonitoredItems Operation Level Result Codes

	Symbolic Id
	Description

	Bad_MonitoredItemIdInvalid
	See Table 166 for the description of this result code.

5.13 Subscription Service Set

5.13.1 Subscription model

5.13.1.1 Description

Subscriptions are used to report Notifications to the Client. Their general behaviour is summarized below. Their precise behaviour is described in 5.13.1.2.

j) Subscriptions have a set of MonitoredItems assigned to them by the Client. MonitoredItems generate Notifications that are to be reported to the Client by the Subscription (see 5.12.1 for a description of MonitoredItems).

k) Subscriptions have a publishing interval. The publishing interval of a Subscription defines the cyclic rate at which the Subscription executes. Each time it executes, it attempts to send a NotificationMessage to the Client. NotificationMessages contain Notifications that have not yet been reported to Client.

l) NotificationMessages are sent to the Client in response to Publish requests. Publish requests are normally queued to the Session as they are received, and one is dequeued and processed by a subscription related to this Session each publishing cycle, if there are Notifications to report. When there are not, the Publish request is not dequeued from the Session, and the Server waits until the next cycle and checks again for Notifications.

m) At the beginning of a cycle, if there are Notifications to send but there are no Publish requests queued, the Server enters a wait state for a Publish request to be received. When one is received, it is processed immediately without waiting for the next publishing cycle.

n) NotificationMessages are uniquely identified by sequence numbers that enable Clients to detect missed Messages. The publishing interval also defines the default sampling interval for its MonitoredItems.

o) Subscriptions have a keep-alive counter that counts the number of consecutive publishing cycles in which there have been no Notifications to report to the Client. When the maximum keep-alive count is reached, a Publish request is dequeued and used to return a keep-alive Message. This keep-alive Message informs the Client that the Subscription is still active. Each keep-alive Message is a response to a Publish request in which the notificationMessage parameter does not contain any Notifications and that contains the sequence number of the next NotificationMessage that is to be sent. In the sections that follow, the term NotificationMessage refers to a response to a Publish request in which the notificationMessage parameter actually contains one or more Notifications, as opposed to a keep-alive Message in which this parameter contains no Notifications. The maximum keep-alive count is set by the Client during Subscription creation and may be subsequently modified using the ModifySubscription Service. Similar to Notification processing described in (c) above, if there are no Publish requests queued, the Server waits for the next one to be received and sends the keep-alive immediately without waiting for the next publishing cycle.

p) Publishing by a Subscription may be enabled or disabled by the Client when created, or subsequently using the SetPublishingMode Service. Disabling causes the Subscription to cease sending NotificationMessages to the Client. However, the Subscription continues to execute cyclically and continues to send keep-alive Messages to the Client.

q) Subscriptions have a lifetime counter that counts the number of consecutive publishing cycles in which there have been no Publish requests received from the Client. When this counter reaches the value calculated for the lifetime of a Subscription based on the MaxKeepAliveCount parameter in the CreateSubscription Service (5.13.2), the Subscription is closed. Closing the Subscription causes its MonitoredItems to be deleted. In addition the Server shall issue a StatusChangeNotification notificationMessage with the status code Bad_Timeout. The StatusChangeNotification notificationMessage type is defined in 7.19.4.
r) Subscriptions maintain a retransmission queue of sent NotificationMessages. NotificationMessages are retained in this queue until they are acknowledged or until they have been in the queue for a minimum of one keep-alive interval. Clients are required to acknowledge NotificationMessages as they are received.

The sequence number is an unsigned 32-bit integer that is incremented by one for each NotificationMessage sent. The value 0 is never used for the sequence number. The first NotificationMessage sent on a Subscription has a sequence number of 1. If the sequence number rolls over, it rolls over to 1.

When a Subscription is created, the first Message is sent at the end of the first publishing cycle to inform the Client that the Subscription is operational. A NotificationMessage is sent if there are Notifications ready to be reported. If there are none, a keep-alive Message is sent instead that contains a sequence number of 1, indicating that the first NotificationMessage has not yet been sent. This is the only time a keep-alive Message is sent without waiting for the maximum keep-alive count to be reached, as specified in (f) above.

The value of the sequence number is never reset during the lifetime of a Subscription. Therefore, the same sequence number shall not be reused on a Subscription until over four billion NotificationMessages have been sent. At a continuous rate of one thousand NotificationMessages per second on a given Subscription, it would take roughly fifty days for the same sequence number to be reused. This allows Clients to safely treat sequence numbers as unique.

Sequence numbers are also used by Clients to acknowledge the receipt of NotificationMessages. Publish requests allow the Client to acknowledge all Notifications up to a specific sequence number and to acknowledge the sequence number of the last NotificationMessage received. One or more gaps may exist in between. Acknowledgements allow the Server to delete NotificationMessages from its retransmission queue.

Clients may ask for retransmission of selected NotificationMessages using the Republish Service. This Service returns the requested Message.

5.13.1.2 State table

The state table formally describes the operation of the Subscription. The following model of operations is described by this state table. This description applies when publishing is enabled or disabled for the Subscription.

After creation of the Subscription, the Server starts the publishing timer and restarts it whenever it expires. If the timer expires the number of times defined for the Subscription lifetime without having received a Subscription Service request from the Client, the Subscription assumes that the Client is no longer present, and terminates.

Clients send Publish requests to Servers to receive Notifications. Publish requests are not directed to any one Subscription and, therefore, may be used by any Subscription. Each contains acknowledgements for one or more Subscriptions. These acknowledgements are processed when the Publish request is received. The Server then queues the request in a queue shared by all Subscriptions, except in the following cases:

s) The previous Publish response indicated that there were still more Notifications ready to be transferred and there were no more Publish requests queued to transfer them.

t) The publishing timer of a Subscription expired and there were either Notifications to be sent or a keep-alive Message to be sent.

In these cases, the newly received Publish request is processed immediately by the first Subscription to encounter either case (a) or case (b).

Each time the publishing timer expires, it is immediately reset. If there are Notifications or a keep-alive Message to be sent, it dequeues and processes a Publish request. When a Subscription processes a Publish request, it accesses the queues of its MonitoredItems and dequeues its Notifications, if any. It returns these Notifications in the response, setting the moreNotifications flag if it was not able to return all available Notifications in the response.

If there were Notifications or a keep-alive Message to be sent but there were no Publish requests queued, the Subscription assumes that the Publish request is late and waits for the next Publish request to be received, as described in case (b).

If the Subscription is disabled when the publishing timer expires or if there are no Notifications available, it enters the keep-alive state and sets the keep-alive counter to its maximum value as defined for the Subscription.

While in the keep-alive state, it checks for Notifications each time the publishing timer expires. If one or more have been generated, a Publish request is dequeued and a NotificationMessage is returned in the response. However, if the publishing timer expires without a Notification becoming available, a Publish request is dequeued and a keep-alive Message is returned in the response. The Subscription then returns to the normal state of waiting for the publishing timer to expire again. If, in either of these cases, there are no Publish requests queued, the Subscription waits for the next Publish request to be received, as described in case (b).

The Subscription states are defined in Table 79.

Table 79 – Subscription States

	State
	Description

	CLOSED
	The Subscription has not yet been created or has terminated

	CREATING
	The Subscription is being created.

	NORMAL
	The Subscription is cyclically checking for Notifications from its MonitoredItems. The keep-alive counter is not used in this state.

	LATE
	The publishing timer has expired and there are Notifications available or a keep-alive Message is ready to be sent, but there are no Publish requests queued. When in this state, the next Publish request is processed when it is received. The keep-alive counter is not used in this state.

	KEEPALIVE
	The Subscription is cyclically checking for Notifications from its MonitoredItems or for the keep-alive counter to count down to 0 from its maximum.

The state table is described in Table 80. The following rules and conventions apply:

u) Events represent the receipt of Service requests and the occurrence internal Events, such as timer expirations.

v) Service requests Events may be accompanied by conditions that test Service parameter values. Parameter names begin with a lower case letter.

w) Internal Events may be accompanied by conditions that test state Variable values. State Variables are defined in 5.13.1.3. They begin with an upper case letter.

x) Service request and internal Events may be accompanied by conditions represented by functions whose return value is tested. Functions are identified by “()” after their name. They are described in 5.13.1.4.

y) When an Event is received, the first transition for the current state is located and the transitions are searched sequentially for the first transition that meets the Event or conditions criteria. If none are found, the Event is ignored.

z) Actions are described by functions and state Variable manipulations.

aa) The LifetimeTimerExpires Event is triggered when its corresponding counter reaches zero.

Table 80 – Subscription State Table

	#
	Current State
	Event/Conditions
	Action
	Next State

	1
	CLOSED
	Receive CreateSubscription Request
	CreateSubscription()
	CREATING

	2
	CREATING
	CreateSubscription fails
	ReturnNegativeResponse()
	CLOSED

	3
	CREATING
	CreateSubscription succeeds
	InitializeSubscription()

MessageSent = FALSE

ReturnResponse()
	NORMAL

	4
	NORMAL
	Receive Publish Request

&&

(

PublishingEnabled == FALSE

||

(PublishingEnabled == TRUE

&& MoreNotifications == FALSE)

)
	ResetLifetimeCounter()

DeleteAckedNotificationMsgs()

EnqueuePublishingReq()
	NORMAL

	5
	NORMAL
	Receive Publish Request

&& PublishingEnabled == TRUE

&& MoreNotifications == TRUE
	ResetLifetimeCounter()

DeleteAckedNotificationMsgs()

ReturnNotifications()

MessageSent = TRUE
	NORMAL

	6
	NORMAL
	PublishingTimer Expires

&& PublishingReqQueued == TRUE

&& PublishingEnabled == TRUE

&& NotificationsAvailable == TRUE
	StartPublishingTimer()

DequeuePublishReq()

ReturnNotifications()

MessageSent == TRUE
	NORMAL

	7
	NORMAL
	PublishingTimer Expires

&& PublishingReqQueued == TRUE

&& MessageSent == FALSE

&&

(

PublishingEnabled == FALSE

||

(PublishingEnabled == TRUE

&& NotificationsAvailable == FALSE)

)
	StartPublishingTimer()

DequeuePublishReq()

ReturnKeepAlive()

MessageSent == TRUE
	NORMAL

	8
	NORMAL
	PublishingTimer Expires

&& PublishingReqQueued == FALSE

&&

(

MessageSent == FALSE

||

(PublishingEnabled == TRUE

&& NotificationsAvailable == TRUE)

)
	StartPublishingTimer()
	LATE

	9
	NORMAL
	PublishingTimer Expires

&& MessageSent == TRUE

&&

(

PublishingEnabled == FALSE

||

(PublishingEnabled == TRUE

&& NotificationsAvailable == FALSE)

)
	StartPublishingTimer()

ResetKeepAliveCounter()
	KEEPALIVE

	10
	LATE
	Receive Publish Request

&& PublishingEnabled == TRUE

&& (NotificationsAvailable == TRUE

|| MoreNotifications == TRUE)
	ResetLifetimeCounter()

DeleteAckedNotificationMsgs()

ReturnNotifications()

MessageSent = TRUE
	NORMAL

	11
	LATE
	Receive Publish Request

&&

(

PublishingEnabled == FALSE

||

(PublishingEnabled == TRUE

&& NotificationsAvailable == FALSE

&& MoreNotifications == FALSE)

)
	ResetLifetimeCounter()

DeleteAckedNotificationMsgs()

ReturnKeepAlive()

MessageSent = TRUE
	KEEPALIVE

	12
	LATE
	PublishingTimer Expires
	StartPublishingTimer()
	LATE

	13
	KEEPALIVE
	Receive Publish Request
	ResetLifetimeCounter()

DeleteAckedNotificationMsgs()

EnqueuePublishingReq()
	KEEPALIVE

	14
	KEEPALIVE
	PublishingTimer Expires

&& PublishingEnabled == TRUE

&& NotificationsAvailable == TRUE

&& PublishingReqQueued == TRUE
	StartPublishingTimer()

DequeuePublishReq()

ReturnNotifications()

MessageSent == TRUE
	NORMAL

	15
	KEEPALIVE
	PublishingTimer Expires

&& PublishingReqQueued == TRUE

&& KeepAliveCounter == 1

&&

(

PublishingEnabled == FALSE

||

(PublishingEnabled == TRUE

&& NotificationsAvailable == FALSE

)
	StartPublishingTimer()

DequeuePublishReq()

ReturnKeepAlive()

ResetKeepAliveCounter()
	KEEPALIVE

	16
	KEEPALIVE
	PublishingTimer Expires

&& KeepAliveCounter > 1

&&

(

PublishingEnabled == FALSE

||

(PublishingEnabled == TRUE

&& NotificationsAvailable == FALSE)

)
	StartPublishingTimer()

KeepAliveCounter--
	KEEPALIVE

	17
	KEEPALIVE
	PublishingTimer Expires

&& PublishingReqQueued == FALSE

&&

(

KeepAliveCounter == 1

||

(KeepAliveCounter > 1

&& PublishingEnabled == TRUE

&& NotificationsAvailable == TRUE)

)
	StartPublishingTimer()
	LATE

	18
	NORMAL

|| LATE

|| KEEPALIVE
	Receive ModifySubscription Request
	ResetLifetimeCounter()

UpdateSubscriptionParams()

ReturnResponse()
	SAME

	19
	NORMAL

|| LATE

|| KEEPALIVE
	Receive SetPublishingMode Request
	ResetLifetimeCounter()

SetPublishingEnabled()

MoreNotifications = FALSE

ReturnResponse()
	SAME

	20
	NORMAL

|| LATE

|| KEEPALIVE
	Receive Republish Request

&& RequestedMessageFound == TRUE
	ResetLifetimeCounter()

ReturnResponse()
	SAME

	21
	NORMAL

|| LATE

|| KEEPALIVE
	Receive Republish Request

&& RequestedMessageFound == FALSE
	ResetLifetimeCounter()

ReturnNegativeResponse()
	SAME

	22
	NORMAL

|| LATE

|| KEEPALIVE
	Receive TransferSubscriptions Request

&& SessionChanged() == FALSE
	ResetLifetimeCounter()

ReturnNegativeResponse ()
	SAME

	23
	NORMAL

|| LATE

|| KEEPALIVE
	Receive TransferSubscriptions Request

&& SessionChanged() == TRUE

&& ClientValidated() ==TRUE
	SetSession()

ResetLifetimeCounter()

DeleteAckedNotificationMsgs()

ReturnResponse()
IssueStatusChangeNotification()
	SAME

	24
	NORMAL

|| LATE

|| KEEPALIVE
	Receive TransferSubscriptions Request

&& SessionChanged() == TRUE

&& ClientValidated() == FALSE
	ReturnNegativeResponse()
	SAME

	25
	NORMAL

|| LATE

|| KEEPALIVE
	Receive DeleteSubscriptions Request

&& SubscriptionAssignedToClient ==TRUE
	DeleteMonitoredItems()

DeleteClientPublReqQueue()
	CLOSED

	26
	NORMAL

|| LATE

|| KEEPALIVE
	Receive DeleteSubscriptions Request

&& SubscriptionAssignedToClient ==FALSE
	ResetLifetimeCounter()

ReturnNegativeResponse()
	SAME

	27
	NORMAL

|| LATE

|| KEEPALIVE
	LifetimeTimer Expires
	DeleteMonitoredItems()
IssueStatusChangeNotification()
	CLOSED

5.13.1.3 State Variables and parameters

The state Variables are defined alphabetically in Table 81.

Table 81 – State variables and parameters

	State Variable
	Description

	MoreNotifications
	A boolean value that is set to TRUE only by the CreateNotificationMsg() when there were too many Notifications for a single NotificationMessage.

	LatePublishRequest
	A boolean value that is set to TRUE to reflect that, the last time the publishing timer expired, there were no Publish requests queued.

	LifetimeCounter
	A value that contains the number of consecutive publishing timer expirations without Client activity before the Subscription is terminated.

	MessageSent
	A boolean value that is set to TRUE to mean that either a NotificationMessage or a keep-alive Message has been sent on the Subscription. It is a flag that is used to ensure that either a NotificationMessage or a keep-alive Message is sent out the first time the publishing timer expires.

	NotificationsAvailable
	A boolean value that is set to TRUE only when there is at least one MonitoredItem that is in the reporting mode and that has a Notification queued or there is at least one item to report whose triggering item has triggered and that has a Notification queued. The transition of this state Variable from FALSE to TRUE creates the “New Notification Queued” Event in the state table.

	PublishingEnabled
	The parameter that requests publishing to be enabled or disabled.

	PublishingReqQueued
	A boolean value that is set to TRUE only when there is a Publish request Message enqueued to the Subscription.

	RequestedMessageFound
	A boolean value that is set to TRUE only when the Message requested to be retransmitted was found in the retransmission queue.

	SeqNum
	The value that records the value of the sequence number used in NotificationMessages

	SubscriptionAssignedToClient
	A boolean value that is set to TRUE only when the Subscription requested to be deleted is assigned to the Client that issued the request. A Subscription is assigned to the Client that created it. That assignment can only be changed through successful completion of the TransferSubscriptions Service.

5.13.1.4 Functions

The action functions are defined alphabetically in Table 82.

Table 82 – Functions

	State
	Description

	BindSession()
	Bind the Client Session associated with the Subscription to the Client Session used to send the Service being processed. If this was the last Subscription bound to the previous Client, clear the Publish request queue of all Publish requests sent by the previous Client and return negative responses for each.

	ClientValidated()
	A boolean function that returns TRUE only when the Client that is submitting a TransferSubscriptions request is operating on behalf of the same user and supports the same Profiles as the Client of the previous Session.

	CreateNotificationMsg()
	Increment the SeqNum and create a NotificationMessage from the MonitoredItems assigned to the Subscription.

Save the newly-created NotificationMessage in the retransmission queue.

If all available Notifications can be sent in the Publish response, the MoreNotifications state Variable is set to FALSE. Otherwise, it is set to TRUE.

	CreateSubscription()
	Attempt to create the Subscription.

	DeleteAckedNotificationMsgs()
	Delete the NotificationMessages from the retransmission queue that were acknowledged by the request.

	DeleteClientPublReqQueue()
	Clear the Publish request queue for the Client that is sending the DeleteSubscriptions request, if there are no more Subscriptions assigned to that Client.

	DeleteMonitoredItems()
	Delete all MonitoredItems assigned to the Subscription

	DequeuePublishReq()
	Dequeue a publishing request in first-in first-out order.
Validate if the publish request is still valid by checking the timeoutHint in the RequestHeader.

If the request timed out, send a Bad_Timeout service result for the request and dequeue another publish request.

	EnqueuePublishingReq()
	Enqueue the publishing request

	InitializeSubscription()
	ResetLifetimeCounter()

MoreNotifications = FALSE

PublishRateChange = FALSE

PublishingEnabled = value of publishingEnabled parameter in the CreateSubscription request

PublishingReqQueued = FALSE

SeqNum = 0

SetSession()

StartPublishingTimer()

	IssueStatusChangeNotification()
	Issue a StatusChangeNotification notificationMessage with a status code for the status change of the Subscription. The StatusChangeNotification notificationMessage type is defined in 7.19.4. Bad_Timeout status code is used if the lifetime expires and Good_SubscriptionTransferred is used if the Subscriptions was transferred to another Session.

	ResetKeepAliveCounter()
	Reset the keep-alive counter to the maximum keep-alive count of the Subscription. The maximum keep-alive count is set by the Client when the Subscription is created and may be modified using the ModifySubscription Service.

	ResetLifetimeCounter()
	Reset the LifetimeCounter Variable to the value specified for the lifetime of a Subscription in the CreateSubscription Service (5.13.2).

	ReturnKeepAlive()
	CreateKeepAliveMsg()

ReturnResponse()

	ReturnNegativeResponse ()
	Return a Service response indicating the appropriate Service level error. No parameters are returned other than the responseHeader that contains the Service level StatusCode.

	ReturnNotifications()
	CreateNotificationMsg()

ReturnResponse()

If (MoreNotifications == TRUE) && (PublishingReqQueued == TRUE)

{

DequeuePublishReq()

Loop through this function again

}

	ReturnResponse()
	Return the appropriate response, setting the appropriate parameter values and StatusCodes defined for the Service.

	SessionChanged()
	A boolean function that returns TRUE only when the Session used to send a TransferSubscriptions request is different than the Client Session currently associated with the Subscription.

	SetPublishingEnabled ()
	Set the PublishingEnabled state Variable to the value of the publishingEnabled parameter received in the request.

	SetSession
	Set the Session information for the Subscription to match the Session on which the TransferSubscriptions request was issued.

	StartPublishingTimer()
	Start or restart the publishing timer and decrement the LifetimeCounter Variable.

	UpdateSubscriptionParams()
	Negotiate and update the Subscription parameters. If the new keep-alive interval is less than the current value of the keep-alive counter, perform ResetKeepAliveCounter() and ResetLifetimeCounter().

5.13.2 CreateSubscription

5.13.2.1 Description

This Service is used to create a Subscription. Subscriptions monitor a set of MonitoredItems for Notifications and return them to the Client in response to Publish requests.

5.13.2.2 Parameters

Table 83 defines the parameters for the Service.

Table 83 – CreateSubscription Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	Request Header
	Common request parameters (see 7.26 for RequestHeader definition).

	
requestedPublishing
Interval
	Duration
	This interval defines the cyclic rate that the Subscription is being requested to return Notifications to the Client. This interval is expressed in milliseconds. This interval is represented by the publishing timer in the Subscription state table (see 5.13.1.2).

The negotiated value for this parameter returned in the response is used as the default sample interval for MonitoredItems assigned to this Subscription.
The value 0 is invalid.

	
requestedLifetimeCount
	Counter
	Requested lifetime count (see 7.5 for Counter definition). The lifetime count shall be a mimimum of three times the keep keep-alive count.

When the publishing timer has expired this number of times without a Publish request being available to send a NotificationMessage, then the Subscription shall be deleted by the Server.

	
requestedMaxKeepAlive
Count
	Counter
	Requested maximum keep-alive count (see 7.5 for Counter definition). When the publishing timer has expired this number of times without requiring any NotificationMessage to be sent, the Subscription sends a keep-alive Message to the Client.
The value 0 is invalid.

	
maxNotificationsPerPublish
	Counter
	The maximum number of notifications that the Client wishes to receive in a single Publish response. A value of zero indicates that there is no limit.

	
publishingEnabled
	Boolean
	A Boolean parameter with the following values :

TRUE
publishing is enabled for the Subscription.

FALSE
publishing is disabled for the Subscription.

The value of this parameter does not affect the value of the monitoring mode Attribute of MonitoredItems.

	
priority
	Byte
	Indicates the relative priority of the Subscription. When more than one Subscription needs to send Notifications, the Server should dequeue a Publish request to the Subscription with the highest priority number. For Subscriptions with equal priority the Server should dequeue Publish requests in a round-robin fashion. When the keep-alive period expires for a Subscription it shall take precedence regardless of its priority, in order to prevent the Subscription from expiring.

A Client that does not require special priority settings should set this value to zero.

	
	
	

	Response
	
	

	
responseHeader
	Response Header
	Common response parameters (see 7.27 for ResponseHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription (see 7.13 for IntegerId definition). This identifier shall be unique for the entire Server, not just for the Session, in order to allow the Subscription to be transferred to another Session using the TransferSubscriptions service.

	
revisedPublishingInterval
	Duration
	The actual publishing interval that the Server will use, expressed in milliseconds. The Server should attempt to honor the Client request for this parameter, but may negotiate this value up or down to meet its own constraints.

	
revisedLifetimeCount
	Counter
	The lifetime of the Subscription shall be a minimum of three times the keep-alive interval negotiated by the Server.

	
revisedMaxKeepAliveCount
	Counter
	The actual maximum keep-alive count (see 7.5 for Counter definition). The Server should attempt to honor the Client request for this parameter, but may negotiate this value up or down to meet its own constraints.

5.13.2.3 Service results

Table 84 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 84 – CreateSubscription Service Result Codes

	Symbolic Id
	Description

	Bad_TooManySubscriptions
	The Server has reached its maximum number of subscriptions.

5.13.3 ModifySubscription

5.13.3.1 Description

This Service is used to modify a Subscription.

5.13.3.2 Parameters

Table 85 defines the parameters for the Service. Changes to the publishing interval become effective the next time the publishing timer expires.

Table 85 – ModifySubscription Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription (see 7.13 for IntegerId definition).

	
requestedPublishingInterval
	Duration
	This interval defines the cyclic rate that the Subscription is being requested to return Notifications to the Client. This interval is expressed in milliseconds. This interval is represented by the publishing timer in the Subscription state table (see 5.13.1.2).

The negotiated value for this parameter returned in the response is used as the default sample interval for MonitoredItems assigned to this Subscription.
The value 0 is invalid.

	
requestedLifetimeCount
	Counter
	Requested lifetime count (see 7.5 for Counter definition). The lifetime count shall be a mimimum of three times the keep keep-alive count.

When the publishing timer has expired this number of times without a Publish request being available to send a NotificationMessage, then the Subscription shall be deleted by the Server.

	
requestedMaxKeepAliveCount
	Counter
	Requested maximum keep-alive count (see 7.5 for Counter definition). When the publishing timer has expired this number of times without requiring any NotificationMessage to be sent, the Subscription sends a keep-alive Message to the Client.
The value 0 is invalid.

	
maxNotificationsPerPublish
	Counter
	The maximum number of notifications that the Client wishes to receive in a single Publish response. A value of zero indicates that there is no limit.

	
priority
	Byte
	Indicates the relative priority of the Subscription. When more than one Subscription needs to send Notifications, the Server should dequeue a Publish request to the Subscription with the highest priority number. For Subscriptions with equal priority the Server should dequeue Publish requests in a round-robin fashion. Any Subscription that needs to send a keep-alive Message shall take precedence regardless of its priority, in order to prevent the Subscription from expiring.

A Client that does not require special priority settings should set this value to zero.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
revisedPublishingInterval
	Duration
	The actual publishing interval that the Server will use, expressed in milliseconds. The Server should attempt to honor the Client request for this parameter, but may negotiate this value up or down to meet its own constraints.

	
revisedLifetimeCount
	Counter
	The lifetime of the Subscription shall be a minimum of three times the keep-alive interval negotiated by the Server.

	
revisedMaxKeepAliveCount
	Counter
	The actual maximum keep-alive count (see 7.5 for Counter definition). The Server should attempt to honor the Client request for this parameter, but may negotiate this value up or down to meet its own constraints.

5.13.3.3 Service results

Table 86 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 86 – ModifySubscription Service Result Codes

	Symbolic Id
	Description

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

5.13.4 SetPublishingMode

5.13.4.1 Description

This Service is used to enable sending of Notifications on one or more Subscriptions.

5.13.4.2 Parameters

Table 87 defines the parameters for the Service.

Table 87 – SetPublishingMode Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
publishingEnabled
	Boolean
	A Boolean parameter with the following values :

TRUE
publishing of NotificationMessages is enabled for the Subscription.

FALSE
publishing of NotificationMessages is disabled for the Subscription.

The value of this parameter does not affect the value of the monitoring mode Attribute of MonitoredItems. Setting this value to FALSE does not discontinue the sending of keep-alive Messages.

	
subscriptionIds []
	IntegerId
	List of Server-assigned identifiers for the Subscriptions to enable or disable (see 7.13 for IntegerId definition).

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the Subscriptions to enable/disable (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the subscriptionIds request parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the Subscriptions to enable/disable (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the subscriptionIds request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.13.4.3 Service results

Table 88 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 88 – SetPublishingMode Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.13.4.4 StatusCodes

Table 89 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 89 – SetPublishingMode Operation Level Result Codes

	Symbolic Id
	Description

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

5.13.5 Publish

5.13.5.1 Description

This Service is used for two purposes. First, it is used to acknowledge the receipt of NotificationMessages for one or more Subscriptions. Second, it is used to request the Server to return a NotificationMessage or a keep-alive Message. Since Publish requests are not directed to a specific Subscription, they may be used by any Subscription. 5.13.1.2 describes the use of the Publish Service.

Client strategies for issuing Publish requests may vary depending on the networking delays between the Client and the Server. In many cases, the Client may wish to issue a Publish request immediately after creating a Subscription, and thereafter, immediately after receiving a Publish response.

In other cases, especially in high latency networks, the Client may wish to pipeline Publish requests to ensure cyclic reporting from the Server. Pipelining involves sending more than one Publish request for each Subscription before receiving a response. For example, if the network introduces a delay between the Client and the Server of 5 seconds and the publishing interval for a Subscription is one second, then the Client will have to issue Publish requests every second instead of waiting for a response to be received before sending the next request.
A server should limit the number of active Publish requests to avoid an infinite number since it is expected that the Publish requests are queued in the Server. But a Server shall accept more queued Publish requests than created Subscriptions. It is expected that a Server supports several Publish requests per Subscription. When a Server receives a new Publish request that exceeds its limit it shall dequeue the oldest Publish request and return a response with the result set to Bad_TooManyPublishRequests. If a Client receives this Service result for a Publish request it shall not issue another Publish request before one of its outstanding Publish requests is returned from the Server.

Clients can limit the size of Publish reponses with the maxNotificationsPerPublish parameter passed to the CreateSubscription Service. However, this could still result in a message that is too large for the Client or Server to process. In this situation, the Client will find that either the SecureChannel goes into a fault state and needs to be re-established or the Publish response returns an error and calling the Republish Service also returns an error. If either situation occurs then the Client will have to adjust its message processing limits or the parameters for the Subscription and/or MonitoredItems.

The return diagnostic info setting in the request header of the CreateMonitoredItems or the last ModifyMonitoredItems Service is applied to the Monitored Items and is used as the diagnostic information settings when sending Notifications in the Publish response.
5.13.5.2 Parameters

Table 90 defines the parameters for the Service.

Table 90 – Publish Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscription
Acknowledgements []
	Subscription Acknowledgement
	The list of acknowledgements for one or more Subscriptions. This list may contain multiple acknowledgements for the same Subscription (multiple entries with the same subscriptionId).

	

subscriptionId
	IntegerId
	The Server assigned identifier for a Subscription (see 7.13 for IntegerId definition).

	

sequenceNumber
	Counter
	The sequence number being acknowledged (see 7.5 for Counter definition). The Server may delete the Message with this sequence number from its retransmission queue.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
subscriptionId
	IntegerId
	The Server-assigned identifier for the Subscription for which Notifications are being returned (see 7.13 for IntegerId definition). The value 0 is used to indicate that there were no Subscriptions defined for which a response could be sent.

	
availableSequence
Numbers []
	Counter
	A list of sequence number ranges that identify unacknowledged NotificationMessages that are available for retransmission from the Subscription’s retransmission queue. This list is prepared after processing the acknowledgements in the request (see 7.5 for Counter definition).

	
moreNotifications
	Boolean
	A Boolean parameter with the following values :

TRUE
the number of Notifications that were ready to be sent could not be sent in a single response.

FALSE
all Notifications that were ready are included in the response.

	
notificationMessage
	Notification Message
	The NotificationMessage that contains the list of Notifications. The NotificationMessage parameter type is specified in 7.20.

	
results []
	StatusCode
	List of results for the acknowledgements (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the subscriptionAcknowledgements request parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the acknowledgements (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the subscriptionAcknowledgements request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.13.5.3 Service results

Table 91 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.
Table 91 – Publish Service Result Codes

	Symbolic Id
	Description

	Bad_TooManyPublishRequests
	The server has reached the maximum number of queued publish requests.

	Bad_NoSubscription
	There is no subscription available for this session.

5.13.5.4 StatusCodes

Table 92 defines values for the acknowledgeResults parameter that are specific to this Service. Common StatusCodes are defined in Table 166.
Table 92 – Publish Operation Level Result Codes

	Symbolic Id
	Description

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

	Bad_SequenceNumberUnknown
	The sequence number is unknown to the server.

5.13.6 Republish

5.13.6.1 Description

This Service requests the Subscription to republish a NotificationMessage from its retransmission queue. If the Server does not have the requested Message in its retransmission queue, it returns an error response.

See 5.13.1.2 for the detail description of the behaviour of this Service.

5.13.6.2 Parameters

Table 93 defines the parameters for the Service.

Table 93 – Republish Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionId
	IntegerId
	The Server assigned identifier for the Subscription to be republished (see 7.13 for IntegerId definition).

	
retransmitSequence
Number
	Counter
	The sequence number of a specific NotificationMessage to be republished (see 7.5 for Counter definition).

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
notificationMessage
	Notification Message
	The requested NotificationMessage. The NotificationMessage parameter type is specified in 7.18.

5.13.6.3 Service results

Table 94 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 94 – Republish Service Result Codes

	Symbolic Id
	Description

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

	Bad_MessageNotAvailable
	The requested message is no longer available.

5.13.7 TransferSubscriptions
5.13.7.1 Description

This Service is used to transfer a Subscription and its MonitoredItems from one Session to another. For example, a Client may need to reopen a Session and then transfer its Subscriptions to that Session. It may also be used by one Client to take over a Subscription from another Client by transferring the Subscription to its Session.

The authenticationToken contained in the request header identifies the Session to which the Subscription and MonitoredItems shall be transferred. The Server shall validate that the Client of that Session is operating on behalf of the same user and that the potentially new Client supports the Profiles that are necessary for the Subscription. If the Server transfers the Subscription, it returns the sequence numbers of the NotificationMessages that are available for retransmission. The Client should acknowledge all Messages in this list for which it will not request retransmission.
If the Server transfers the Subscription to the new Session, the Server shall issue a StatusChangeNotification notificationMessage with the status code Good_SubscriptionTransferred. The StatusChangeNotification notificationMessage type is defined in 7.19.4.
5.13.7.2 Parameters

Table 95 defines the parameters for the Service.

Table 95 – TransferSubscriptions Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionIds []
	IntegerId
	List of identifiers for the Subscriptions to be transferred to the new Client (see 7.13 for IntegerId definition). These identifiers are transferred from the primary Client to a backup Client via external mechanisms.

	
sendInitialValues
	Boolean
	A Boolean parameter with the following values :

TRUE
the first Publish response after the TransferSubscriptions call shall contain the current values of all Monitored Items in the Subscription where the Monitoring Mode is set to Reporting.

FALSE
the first Publish response after the TransferSubscriptions call shall contain only the value changes since the last Publish response was sent.
This parameter only applies to MonitoredItems used for monitoring Attribute changes.

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	TransferResult
	List of results for the Subscriptions to transfer. The size and order of the list matches the size and order of the subscriptionIds request parameter.

	

statusCode
	StatusCode
	StatusCode for each Subscription to be transferred (see 7.33 for StatusCode definition).

	

availableSequence

Numbers []
	Counter
	A list of sequence number ranges that identify NotificationMessages that are in the Subscription’s retransmission queue. This parameter is null if the transfer of the Subscription failed. The Counter type is defined in 7.5.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the Subscriptions to transfer (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the subscriptionIds request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.13.7.3 Service results

Table 96 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 96 – TransferSubscriptions Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

	Bad_UserAccessDenied
	See Table 165 for the description of this result code.
The Client of the current Session is not operating on behalf of the same user as the Session that owns the Subscription.

	Bad_InsufficientClientProfile
	The Client of the current Session does not support one or more Profiles that are necessary for the Subscription.

5.13.7.4 StatusCodes

Table 97 defines values for the operation level statusCode parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 97 – TransferSubscriptions Operation Level Result Codes

	Symbolic Id
	Description

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

5.13.8 DeleteSubscriptions
5.13.8.1 Description

This Service is invoked by the Client to delete one or more Subscriptions that it has created and that have not been transferred to another Client or that have been transferred to it.

Successful completion of this Service causes all MonitoredItems that use the Subscription to be deleted. If this is the last Subscription assigned to the Client issuing the request, then all Publish requests queued by that Client are dequeued and a negative response is returned for each.

5.13.8.2 Parameters

Table 98 defines the parameters for the Service.

Table 98 – DeleteSubscriptions Service Parameters

	Name
	Type
	Description

	Request
	
	

	
requestHeader
	RequestHeader
	Common request parameters (see 7.26 for RequestHeader definition).

	
subscriptionIds []
	IntegerId
	The Server-assigned identifier for the Subscription (see 7.13 for IntegerId definition).

	
	
	

	Response
	
	

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

	
results []
	StatusCode
	List of StatusCodes for the Subscriptions to delete (see 7.33 for StatusCode definition). The size and order of the list matches the size and order of the subscriptionIds request parameter.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the Subscriptions to delete (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the subscriptionIds request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.13.8.3 Service results

Table 99 defines the Service results specific to this Service. Common StatusCodes are defined in Table 165.

Table 99 – DeleteSubscriptions Service Result Codes

	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 165 for the description of this result code.

	Bad_TooManyOperations
	See Table 165 for the description of this result code.

5.13.8.4 StatusCodes

Table 100 defines values for the results parameter that are specific to this Service. Common StatusCodes are defined in Table 166.

Table 100 – DeleteSubscriptions Operation Level Result Codes

	Symbolic Id
	Description

	Bad_SubscriptionIdInvalid
	See Table 165 for the description of this result code.

6 Service behaviours

6.1 Security

6.1.1 Overview

The OPC UA Services define a number of mechanisms to meet the security requirements outlined in Part 2. This section describes a number of important security-related procedures that OPC UA Applications shall follow.

6.1.2 Obtaining and Installing an Application Instance Certificate

All OPC UA Applications require an application instance certificate which shall contain the following information:

· The network name or address of the computer where the application runs;

· The name of the organisation that administers or owns the application;

· The name of the application;
· The URI of the application instance;
· The name of the certificate authority that issued the certificate;

· The issue and expiry date for the certificate;

· The public key issued to the application by the certificate authority (CA);

· A digital signature created by the certificate authority (CA).

In addition, each application instance certificate has a private key which should be stored in a location that can only be accessed by the application. If this private key is compromised, the administrator shall assign a new application instance certificate and private key to the application.

This certificate may be generated automatically when the application is installed. In this situation the private key assigned to the certificate shall be used to create the certificate signature. Certificates created in this way are called self-signed certificates.
If the administrator responsible for the application decides that a self-signed certificate does not meet the security requirements of the organisation, then the administrator should install a certificate issued by a certification authority. The steps involved in requesting an application instance certificate from a certificate authority are shown in Figure 18.

[image: image18.emf]Application

Administrator Certificate Authority

1. Installs application

3. Requests certificate.

2. Creates a self-signed certificate.

• Machine network name or address.

• Organization name.

• Machine network name or address.

• Application name.

• Organization name.

• Proof of identity as administrator.

4. Issues certificate.

• Public key.

• CA digital signature.

• Private key (must be protected).

5. Installs certificate.

• Application certificate with public key.

• Private key (must be protected).

Process completes here if a

self-signed certificate meets

the security requirements

Figure 18 – Obtaining and Installing an Application Instance Certificate

The figure above illustrates the interactions between the Application, the Administrator and the CertificateAuthority. The Application is as OPC UA Application installed on a single machine. The Administrator is the person responsible for managing the machine and the OPC UA Application. The CertificateAuthority is an entity that can issue digital certificates that meet the requirements of the organisation deploying the OPC UA Application.

If the Administrator decides that a self-signed certificate meets the security requirements for the organisation, then the Administrator may skip Steps 3 through 5. Application vendors shall always create a default self-signed certificate during the installation process. Every OPC UA Application shall allow the Administrators to replace application instance certificates with certificates that meet their requirements.

When the Administrator requests a new certificate from a certificate authority, the certificate authority may require that the Administrator provide proof of authorization to request certificates for the organisation that will own the certificate. The exact mechanism used to provide this proof depends on the certificate authority.

Vendors may choose to automate the process of acquiring certificates from an authority. If this is the case, the Administrator would still go through the steps illustrated in the figure, however, the installation program for the application would do them automatically and only prompt the Administrator to provide information about the application instance being installed.

6.1.3 Obtaining and Installing a Software Certificate

All OPC UA Applications may have one or more software certificates that are issued by certification authorities and specify the profiles that the application supports. These software certificates contain the following information:

· The name of the vendor responsible for the product;

· The name of the product;
· The URI for the product;

· The software version and build number;
· The vendor product certificate;
· A list of profiles supported by the application;

· The certification testing status for each supported profile;

· The name of the testing authority that issued the certificate;

· The issue and expiry date for the certificate;

· The public key issued to the application by the certifying authority;

· A digital signature created by the certifying authority.

The product vendor is responsible for completing the certification process and requesting software certificates from the certification authorities. The vendor shall install the software certificates when an application is installed on machine. When distributing these certificates, the application vendors should take precautions to prevent unauthorized users from acquiring their software certificates and using them for applications that the vendor did not develop. Misused software certificates are not a security risk, but vendors could find that they are blamed for interoperability problems caused by certificates use by unauthorized applications.
Vendors may choose to assign their own Certificate to the application (called the Vendor Product Certificate). This Certificate would then be incorporated in the Software Certificate. The private key for the vendor product certificate is managed by the Vendor.
The steps involved in acquiring and installing a software certificate from a certificate authority are shown in Figure 19.

[image: image19.emf]Vendor

Tester Certifying Authority

1. Provides application

3b. Requests certificate.

2. Conducts tests.

• List of supported profiles.

• Vendor name.

• Product Name and URI

• Software version and build number.

• Vendor product certificate

• List of supported profiles.

• Vendor name.

• Product Name and URI

• Software version and build number.

• Vendor product certificate.

• Test results.

• Proof of identity as tester.

4. Issues certificate.

• Public key.

• CA digital signature.

3a. Application fails tests.

• Test results.

5. Distributes certificates

• Build into application installer.

Figure 19 – Obtaining and Installing a Software Certificate

The figure above illustrates the interactions between the Vendor, the Tester and the CertifyingAuthority. The Vendor is the organisation responsible for the OPC UA Application. The Tester may be the vendor (for self-certification) or it may be a third-party testing facility. The CertifyingAuthority is a PKI certificate authority managed by the organisation that created the OPC UA Application profiles and certification programmes.

The CertifyingAuthority will issue certificates only to people it trusts. For that reason, the Tester shall provide proof of identity before the CertifyingAuthority will issue a certificate.
6.1.4 Determining if a Certificate is Trusted
Applications shall never communicate with another application that they do not trust. An Application decides if another application is trusted by checking whether the application instance Certificate for the other application is trusted. Applications shall rely on lists of Certificates provided by the Administrator to determine trust. There are two separate lists: a list of trusted Applications and a list of trusted Certificate Authorities (CAs). If an application is not directly trusted (i.e. its Certificate is not in the list of trusted Applications) then the Application shall build a chain of Certificates back to a trusted CA.

When building a chain each Certificate in the chain shall be validated. If any validation error occurs then the trust check fails. Some validation errors are non-critical which means they can be suppressed by a user of an Application with the appropriate privileges. Suppressed validation errors are always reported via auditing (i.e. an appropriate Audit event is raised).

Building a trust chain requires access to all Certificates in the chain. These Certificates may be stored locally or they may be provided with the application Certificate. Processing stops if a CA certificate cannot be found or if it is in the list of trusted CAs.

Table 101 specifies the steps used to validate a Certificate in the order that they should be followed. These steps are repeated for each certificate in the chain until a trusted certificate is found. Each validation step has a unique error status and audit event type that shall be reported if the check fails. The audit event is in addition to any audit event that was generated for the particular Service that was invoked. The Service audit event in its message text shall include the audit eventID of the AuditCertifcateEvent (for more details see 6.2). Processing halts if an error occurs unless it is non-critical and it has been suppressed.

Application instance certificates shall not be used in a Client or Server until they have been evaluated and marked as trusted. This can happen automatically by a PKI trust chain or in an offline manner where the Certificate is marked as trusted by an administrator after evaluation.

Table 101 – Certificate Validation Steps
	Step
	Error/AuditEvent
	Description

	Certificate Structure
	Bad_SecurityChecksFailed

AuditCertificateInvalidEventType
	The certificate structure is verified.

This error may not be suppressed.

	Validity Period
	Bad_CertificateTimeInvalid
Bad_CertificateIssuerTimeInvalid
AuditCertificateExpiredEventType
	The current time shall be after the start of the validity period and before the end.

This error may be suppressed.

	Host Name
	Bad_CertificateHostNameInvalid

AuditCertificateDataMismatchEventType
	The HostName in the URL used to connect to the Server shall be the same as one of the HostNames specified in the Certificate.

This error may be suppressed.

	URI
	Bad_CertificateUriInvalid

AuditCertificateDataMismatchEventType
	Application and Software Certificates contain an application or product URI that shall match the URI specified in the ApplicationDescription provided with the Certificate.

This check is skipped for CA Certificates.

This error may not be suppressed.

The gatewayServerUri is used to validate an Application Certificate when connecting to a Gateway Server (See 7.1).

	Certificate Usage
	Bad_CertificateUseNotAllowed

Bad_CertificateIssuerUseNotAllowed

AuditCertificateMismatchEventType
	Each Certificate has a set of uses for the Certificate. These uses shall match use requested for the Certificate (i.e. Application, Software or CA),

This error may be suppressed unless the Certificate indicates that the usage is mandatory.

	Trust List Check
	None
	No further checks are required if the Certificate is in the Trust List. The Administrator shall completely validate any Certificate before placing it in the Trust List.

	Find Issuer Certificate
	Bad_CertificateUntrusted

AuditCertificateUntrustedEventType
	A Certificate cannot be trusted if the Issuer Certificate is unknown. A self-signed Certificate is its own issuer.

	Signature
	Bad_SecurityChecksFailed

AuditCertificateInvalidEventType
	A Certificate with an invalid signature shall always be rejected.

	Find Revocation List
	Bad_CertificateRevocationUnknown Bad_CertificateIssuerRevocationUnknown

AuditCertificateRevokedEventType
	Each CA Certificate may have a revocation list. This check fails if this list is not available (i.e. a network interruption prevents the Application from accessing the list). No error is reported if the Administrator disables revocation checks for a CA Certificate.

This error may be suppressed.

	Revocation Check
	Bad_CertificateRevoked

Bad_CertificateIssuerRevoked

AuditCertificateRevokedEventType
	The Certificate has been revoked and may not be used.

This error may not be suppressed.

Certificates are usually placed in a central location called a CertificateStore. Figure 20 illustrates the interactions between the Application, the Administrator and the CertificateStore. The CertificateStore could be on the local machine or in some central server. The exact mechanisms used to access the CertificateStore depend on the application and PKI environment set up by the Administrator.

[image: image20.emf]• Check Instance Certificate.

• Check Issuer Certificate.

4. Find Certificate Revocation List(s)

Administrator

Application Certificate Store

1. Configures application

• Certificate validation policies.

• Location of CA certificates.

• Location of Certificate Revocation List.

• Location of Certificate Trust List.

• Validates Issuer Certificate.

• Validates Certificates in Trust Chain.

• Validates Instance Certificate.

6. Accept Instance Certificate.

3. Find Issuer Certificate

Remote

Application

2. Provides Instance Certificate

• Find Instance Certificate

or

• Find Issuer Certificate

or

• Find any Certificate in Trust Chain.

5. Find Certificate Trust List

Figure 20 – Determining if a Application Instance Certificate is Trusted
6.1.5 Validating a Software Certificate
OPC UA Applications shall validate the SoftwareCertificates provided by the applications that they communicate with.

A SoftwareCertificate is valid if:

· The signature on the SoftwareCertificate is valid;

· The SoftwareCertificate has passed its issue date and it has not expired;

· The SoftwareCertificate has not been revoked by the issuer;

· The issuer Certificate is valid and has not been revoked by the CA that issued it;
The steps used to validate SoftwareCertificates are almost the same as the steps described for application instance Certificates in 6.1.4. The only difference is SoftwareCertificates are not checked against the TrustList for the Application.
SoftwareCertificates always contain an application Certificate which is owned by the vendor that distributes the application. The application Certificate may also be in the Certificate chain used to issue application instance Certificates. For this reason, OPC UA Applications may reject SoftwareCertificates provided by applications if the application Certificate is not part of the Certificate chain for the application instance Certificate. OPC UA Applications should allow Administrators to require this behaviour. Profiles defined in Part 7 may further specify expected Certificate handling behaviors.
6.1.6 Creating a SecureChannel

All OPC UA Applications shall establish a SecureChannel before creating a Session. This SecureChannel requires that both applications have access to certificates that can be used to encrypt and sign Messages exchange. The application instance certificates installed by following the process described in 6.1.2 may be used for this purpose.

The steps involved in establishing a SecureChannel are shown in Figure 21.

[image: image21.emf]Client

Server Certificate Authority

1. GetEndpoints Request

• CA Signature

• Issue and expiry date

• CA revocation list.

2. GetEndpoints Response

• Server certificate

• Message security mode

• Security policy

• User identity token policies

4. OpenSecureChannel Request

• Client certificate

• Client nonce

• Signed with client’s private key

• Encrypted with server’s public key

3. Validate Server Certificate

• CA Signature

• Issue and expiry date

• CA revocation list.

5. Validate Client Certificate

6. OpenSecureChannel Response

• Server nonce

• Security token

• Token lifetime

• Signed with server’s private key

• Encrypted with client’s public key

7. Renew Security Token

• Not required if client is preconfigured

with knowledge of server policies.

Figure 21 – Establishing a SecureChannel

The figure above assumes Client and Server have online access to a certificate authority (CA). If online access is not available and if the administrator has installed the CA public key on the local machine, then the Client and Server shall still validate the application certificates using that key. The figure shows only one CA, however, there is no requirement that the Client and Server certificates be issued by the same authority. A self-signed application instance certificate does not need to be verified with a CA. Any certificate shall be rejected if it is not in a trust list provided by the administrator.
Both the Client and Server shall have a list of certificates that they have been configured to trust (sometimes called the Certificate Trust List or CTL). These trusted certificates may be certificates for certificate authorities or they may be OPC UA Application instance certificates. OPC UA Applications shall be configured to reject connections with applications that do not have a trusted certificate.

Certificates can be compromised, which means they should no longer be trusted. Administrators can revoke a certificate by removing it from the trust list for all applications or the CA can add the certificate to the Certificate Revocation List (CRL) for the issuer Certificate. Administrators may save a local copy of the CRL for each issuer Certificate when online access is not available.

A Client does not need to call GetEndpoints each time it connects to the Server. This information should change rarely and the Client can cache it locally. If the Server rejects the OpenSecureChannel request the Client should call GetEndpoints and make sure the Server configuration has not changed.
The are two security risks which a Client shall be aware of when using the GetEndpoints Service. The first could come from a rogue Discovery Server that tries to direct the Client to a rogue Server. For this reason the Client shall verify that the ServerCertificate in the EndpointDescription is a trusted Certificate before it calls CreateSession.

The second security risk comes from third party that alters the contents of the EndpointDescriptions as they are transferred over the network back to the Client. The Client protects against this by comparing the list of EndpointDescriptions returned from the GetEndpoints Service with list returned in the CreateSession response.
The exact mechanisms for using the security token to sign and encrypt Messages exchanged over the SecureChannel are described in Part 6. The process for renewing tokens is also described in detail in Part 6.

In many cases, the certificates used to establish the SecureChannel will be the application instance certificates. However, some communication stacks might not support certificates that are specific to a single application. Instead, they expect all communication to be secured with a certificate specific to a user or the entire machine. For this reason, OPC UA Applications will need to exchange their application instance certificates when creating a Session.

6.1.7 Creating a Session

Once an OPC UA Client has established a SecureChannel with a Server it can create an OPC UA Session.

The steps involved in establishing a Session are shown in Figure 22.

[image: image22.emf]Client

Server Certificate Authority

1. CreateSession Request

7. ActivateSession Response

• Client instance certificate

• Client nonce

2. Validate Client Certificate

6. Validate User Identity Token

Authentication

Service

3. CreateSession Response

• Server instance certificate

• Server certificate signature

• Server software certificates

• Server nonce

4. Validate Server Certificate

5. ActivateSession Request

• Client software certificates

• Client certificate signature

• User identity token

• User identity token signature

• Server nonce

Figure 22 – Establishing a Session

The figure above illustrates the interactions between a Client, a Server, a certificate authority (CA) and an authentication service. The CA is responsible for issuing the application certificates. If the Client or Server do not have online access to the CA, then they shall validate the application certificates using the CA public key that the administrator shall install on the local machine.

The authentication service is a central database that can verify that user token provided by the Client. This authentication service may also tell the Server what access rights the user has. The authentication service depends on the user identity token. It could be a certificate authority, a Kerberos ticket granting service, a WS-Trust Server or a proprietary database of some sort.

The Client and Server shall prove possession of their application certificates by signing the certificates with a nonce appended. The exact mechanism used to create the proof of possession signatures is described in 5.6.2. Similarly, the Client shall prove possession of some types of user identity tokens by creating signatures with the secret associated with the token.

6.1.8 Impersonating a User

Once an OPC UA Client has established a Session with a Server it can change the user identity associated with the Session by calling the ActivateSession service.

The steps involved in impersonating a user are shown in Figure 23.

[image: image23.emf]Client

Server

1. ActivateSession Request

•Client certificate signature

•User identity token

•User identity token signature

2. Validate User Identity Token

Authentication Service

3. ActivateSession Response

•Server nonce

Figure 23 – Impersonating a User

6.2 Auditing

6.2.1 Overview

Auditing is a requirement in many systems. It provides a means of tracking activities that occur as part of normal operation of the system. It also provides a means of tracking abnormal behaviour. It is also a requirement from a security standpoint. For more information on the security aspects of auditing see Part 2. This section describes what is expected of an OPC UA Server and Client with respect to auditing and it details the audit requirements for each service set. Auditing can be accomplished using one or both of the following methods:

1. The OPC UA Application that generates the audit event can log the audit entry in a log file or other storage location.

2. The OPC UA Server that generates the audit event can publish the audit event using the OPC UA event mechanism. This allows an external OPC UA Client to subscribe to and log the audit entries to a log file or other storage location.
6.2.2 General audit logs

Each OPC UA Service request contains a string parameter that is used to carry an audit record id. A Client or any Server operating as a Client, such as an aggregating Server, can create a local audit log entry for a request that it submits. This parameter allows this Client to pass the identifier for this entry with the request. If this Server also maintains an audit log, it should include this id in its audit log entry that it writes. When this log is examined and that entry is found, the examiner will be able to relate it directly to the audit log entry created by the Client. This capability allows for traceability across audit logs within a system.

6.2.3 General audit Events

A Server that maintains an audit log shall provide the audit log entries via Event Messages. The AuditEventType and its sub-types are defined in Part 3. An audit Event Message also includes the audit record Id. The details of the AuditEventType and its sub types are defined in Part 5. A Server that is an aggregating Server that supports auditing shall also subscribe for audit events for all of the Servers that it is aggregating (assuming they provide auditing). The combined stream should be available from the aggregating Server.
6.2.4 Auditing for Discovery Service Set

This Service Set can be separated into two groups: Services that are called by OPC UA Clients and Services that are invoked by OPC UA Servers. The FindServers and GetEndpoints Services that are called by OPC UA Clients may generate audit entries for failed Service invocations. The RegisterServer Service that is invoked by OPC UA Servers shall generate audit entries for all new registrations and for failed Service invocations. These audit entries shall include the Server URI, Server names, Discovery URIs and isOnline status. Audit entries should not be generated for RegisterServer invocation that do not cause changes to the registered Servers.
6.2.5 Auditing for SecureChannel Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and shall generate audit Events for failed service invocations and for successful invocation of the OpenSecureChannel and CloseSecureChannel Services. The Client generated audit entries should be setup prior to the actual call, allowing the correct audit record Id to be provided. The OpenSecureChannel Service shall generate an audit Event of type AuditOpenSecureChannelEventType or a subtype of it. The CloseSecureChannel service shall generate an audit Event of type AuditCloseSecureChannelEventType or a subtype of it. Both of these Event types are sub-types of the AuditChannelEventType. See Part 5 for the detailed assignment of the SourceNode, the SourceName and additional parameters. For the failure cases the Message for Events of this type should include a description of why the service failed. This description should be more detailed then what was returned to the client. From a security point of view a client only needs to know that it failed, but from an Auditing point of view the exact details of the failure need to be known. In the case of Certificate validation errors the description should include the AuditEventId of the specific AuditCertificateEvent that was generated to report the certificate error. The AuditCertifcateEvent shall also contain the detailed certificate validation error. The additional parameters should include the details of the request. It is understood that these events may be generated by the underlining stack in many cases, but they shall be made available to the Server and the Server shall report them.

6.2.6 Auditing for Session Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and shall generate audit Events for both successful and failed Service invocations. These Services shall generate an audit Event of type AuditSessionEventType or a sub-type of it. In particular, they shall generate the base EventType or the appropriate sub-type, depending on the service that was invoked. The CreateSession service shall generate AuditCreateSessionEventType events or sub-types of it. The ActivateSession service shall generate AuditActivateSessionType events or sub-types of it. When the ActivateSession Service is called to change the user identity then the server shall generate AuditImpersonateUserEventType events or sub-types of it. The CloseSession service shall generate the base EventType of AuditSessionEventType or sub-types of it. See Part 5 for the detailed assignment of the SourceNode, the SourceName and additional parameters. For the failure case the Message for Events of this type should include a description of why the Service failed. The additional parameters should include the details of the request.
This Service Set shall also generate additional audit events in the cases when Certificate validation errors occur. These audit events are generated in addition to the AuditSessionEvents.
For Clients, that support auditing, accessing the services in the Session Service Set shall generate audit entries for both successful and failed invocations of the Service. These audit entries should be setup prior to the actual Service invocation, allowing the invocation to contain the correct audit record id.

6.2.7 Auditing for NodeManagement Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and shall generate audit Events for both successful and failed Service invocations. These Services shall generate an audit Event of type AuditNodeManagementEventType or sub-types of it. See Part 5 for the detailed assignment of the SourceNode, the SourceName and additional parameters. For the failure case, the Message for Events of this type should include a description of why the service failed. The additional parameters should include the details of the request.

For Clients that support auditing, accessing the Services in the NodeManagement Service Set shall generate audit entries for both successful and failed invocations of the Service. All audit entries should be setup prior to the actual Service invocation, allowing the invocation to contain the correct audit record id.

6.2.8 Auditing for Attribute Service Set

The Write or HistoryUpdate Services in this Service Set for Servers that support auditing may generate audit entries and shall generate audit Events for both successful and failed Service invocations. These Services shall generate an audit Event of type AuditUpdateEventType or sub-types of it. In particular the Write Service shall generate an audit event of type AuditWriteUpdateEventType or a sub-type of it. The HistoryUpdate Service shall generate an audit Event of type AuditHistoryUpdateEvent or a subtype of it. Three subtypes of AuditHistoryUpdateEvent are defined as AuditHistoryEventUpdateEventType, AuditHistoryValueUpdateEventType and AuditHistoryDeleteEventType. The subtype depends on the type of operation being performed, historical event update, historical data value update or a historical delete. See Part 5 for the detailed assignment of the SourceNode, the SourceName and additional parameters. For the failure case the Message for Events of this type should include a description of why the Service failed. The additional parameters should include the details of the request.

The Read and HistoryRead Services may generate audit entries and audit Events for failed Service invocations. These Services should generate an audit Event of type AuditEventType or a subtype of it. See Part 5 for the detailed assignment of the SourceNode, SourceName and additional parameters. The Message for Events of this type should include a description of why the Service failed.

For Clients that support auditing, accessing the Write or HistoryUpdate services in the Attribute Service Set shall generate audit entries for both successful and failed invocations of the Service. Invocations of the other Services in this Service Set may generate audit entries. All audit entries should be setup prior to the actual Service invocation, allowing the invocation to contain the correct audit record id.

6.2.9 Auditing for Method Service Set

All Services in this Service Set for Servers that support auditing may generate audit entries and shall generate audit Events for both successful and failed service invocations if the invocation modifies the address space, writes a value or modifies the state of the system (alarm acknowledge, batch sequencing or other system changes). These method calls shall generate an audit Event of type AuditUpdateMethodEventType or sub-types of it. Methods that do not modify the address space, write values or modify the state of the system may generate events. See Part 5 for the detailed assignment of the SourceNode, SourceName and additional parameters.

For Clients that support auditing, accessing the Method Service Set shall generate audit entries for both successful and failed invocations of the Service, if the invocation modifies the address space, writes a value or modifies the state of the system (alarm acknowledge, batch sequencing or other system changes). Invocations of the other Methods may generate audit entries. All audit entries should be setup prior to the actual Service invocation, allowing the invocation to contain the correct audit record id.

6.2.10 Auditing for View, Query, MonitoredItem and Subscription Service Set

All of the Services in these four Service Sets only provide the Client with information, with the exception of the TransferSubscriptions Service in the Subscription Service Set. In general, these services will not generate audit entries or audit Event Messages. The TransferSubscriptions Service shall generate an audit Event of type AuditSessionEventType or sub-types of it for both successful and failed Service invocations. See Part 5 for the detailed assignment of the SourceNode, the SourceName and additional parameters. For the failure case, the Message for Events of this type should include a description of why the service failed.

For Clients that support auditing, accessing the TransferSubscriptions Service in the Subscription Service Set shall generate audit entries for both successful and failed invocations of the Service. Invocations of the other Services in this Service Set do not require audit entries. All audit entries should be setup prior to the actual Service invocation, allowing the invocation to contain the correct audit record id.

6.3 Redundancy

6.3.1 Redundancy overview

Redundancy in OPC UA ensures that both Clients and Server can be redundant. OPC UA does not provide redundancy, it provides the data structures and services by which redundancy may be achieved in a standardized manner.

6.3.2 Server redundancy overview

Server redundancy comes in two modes, transparent and non-transparent. By definition, in transparent redundancy the failover of Server responsibilities from one Server to another is transparent to the Client: the Client does care or even know that failover has occurred; the Client does not need to do anything at all to keep data flowing. In contrast, non-transparent failover requires some activity on the part of the Client.

The two areas where redundancy creates specific needs are in keeping the Server and Client information synchronised across Servers, and in controlling the failover of data flow from one Server to another.

6.3.2.1 Transparent redundancy

For transparent redundancy, all OPC UA provides is the data structures to allow the Client to identify what Servers are available in the redundant set, what the service level of each Server is and which Server is currently supporting a specified Session. All OPC UA interactions within a given session shall be supported by one Server and the Client is able to identify which Server that is, allowing a complete audit trail for the data. It is the responsibility of the Servers to ensure that information is synchronised between the Servers and to effect the switching of the address from one Server to another upon failover.

Figure 24 shows a typical transparent redundancy setup.

[image: image24.wmf]

Transparent Server

Server

 1 (active)

Client and process info

Server 2 (backup)

Client and process info

Client

Figure 24 – Transparent Redundancy setup

6.3.2.2 Non-transparent redundancy

For non-transparent redundancy, OPC UA provides the same data structures and also Server information which tells the Client what modes of failover the Server supports. This information allows the Client to determine what actions it may need to take in order to accomplish failover.

Figure 25 shows a typical non-transparent redundancy setup.

[image: image25.wmf]

Server

 1 (active)

Client and process info

Server 2 (backup)

Client and process info

Client

Figure 25 – Non-Transparent Redundancy setup

For non-transparent redundancy the Server has additional concepts of cold, warm and hot failover. Cold failovers are for Servers where only one Server can be active at a time. Warm failovers are for Servers where the backup Servers can be active, but cannot connect to actual data points (typically a system where the underlying devices are limited to a single connection). Hot failovers are for Servers where more than one Server can be active and fully operational

Table 102 defines the list of failover actions.

Table 102 – Redundancy failover actions

	Failover mode
	COLD
	WARM
	HOT

	On initial connection:
	
	
	

	
Connect to more than one OPC UA Server.
	
	X
	X

	
Creating Subscriptions and adding monitored items to them.
	
	X
	X

	
Activating sampling on the Subscriptions
	
	
	X

	At Failover:
	
	
	

	
Connect to backup OPC UA Server
	X
	
	

	
Creating Subscriptions and adding monitored items.
	X
	
	

	
Activating sampling on the Subscriptions.
	X
	X
	

	
Activate publishing.
	X
	X
	X

Some or all of that activity may be pushed into a Server proxy on the Client machine, to reduce the amount of functionality that shall be designed into the Client and to enable simpler Clients to take advantage of non-transparent redundancy. By using the TransferSubscriptions Service, which allows a Client to request that a set of Subscriptions be moved from one Session to another, a Server vendor can effectively make transparent failover a part of a proxy stub that lives on the Client. There are two ways to do this, one requiring code in the Server to support this and the other doing it all from the Client proxy process.

When the Client proxy is used, the proxy simply duplicates Subscriptions and modifications to Subscriptions, by passing the calls on to both Servers, but only enabling publishing or sampling on one Server. When the proxy detects a failure, it enables publishing and/or sampling on the backup Server, just as the Client would if it were a redundancy-aware Client.

The other method also requires a Client stub, but in this case the stub is a much lighter-weight process. In this mode, it is the Server which mirrors all Subscriptions in the other Server, but the Client endpoint for these Subscriptions is the active Server. When the stub detects that the active Server has failed, it issues a TransferSubscriptions call to the backup Server, moving the Subscriptions from the Session owned by the failed Server to its own Session, and activating publishing.

Figure 26 shows the difference between Client proxy and Server proxy redundancy.

[image: image26.wmf]

Server

 1

Server 2

Client

 1

Client 2

Server

proxy

Client

proxy

Figure 26 – Redundancy mode

6.3.3 Client redundancy

Client redundancy is supported in OPC UA by the TransferSubscriptions call and by exposing Client information in the Server information structures. Since Subscription lifetime is not tied to the Session in which it was created, backup Clients can monitor the active Client’s Session with the Server, just as they would monitor any other data variable. If the active Client ceases to be active, the Server shall send a data update to any Client which has that variable monitored. Upon receiving such notification, a backup Client would then instruct the Server to transfer the Subscriptions to its own session. If the Subscription is crafted carefully, with sufficient resources to buffer data during the change-over, there need be no data loss from a Client failover.

OPC UA does not provide a standardized mechanism for conveying the SessionId and SubscriptionIds from the active Client to the backup Clients, but as long as the backup Clients know the Client name of the active Client, this information is readily available using the SessionDiagnostics and SubscriptionDiagnostics portions of the ServerDiagnostics data.

7 Common parameter type definitions

7.1 ApplicationDescription

The components of this parameter are defined in Table 103.

Table 103 – ApplicationDescription
	Name
	Type
	Description

	ApplicationDescription
	structure
	Specifies an application that is available.

	
applicationUri
	String
	The globally unique identifier for the application instance.

	
productUri
	String
	The globally unique identifier for the product.

	
applicationName
	LocalizedText
	A localized descriptive name for the application.

	
applicationType
	Enum

ApplicationType
	The type of application.

This value is an enumeration with one of the following values:

SERVER_0

The application is a Server.

CLIENT_1

The application is a Client.

CLIENTANDSERVER_2
The application is a Client and a Server.

DISCOVERYSERVER_3
The application is a DiscoveryServer.

	
gatewayServerUri
	String
	A URI that identifies the Gateway Server associated with the discoveryUrls.

This value is not specified if the Server can be accessed directly.

This field is not used if the applicationType is CLIENT_1.

	
discoveryProfileUri
	String
	A URI that identifies the discovery profile supported by the URLs provided.

This field is not used if the applicationType is CLIENT_1.

If this value is not specified then the Endpoints shall support the Discovery Services defined in 5.4.

Alternate discovery profiles are defined in Part 7.

	
discoveryUrls[]
	String
	A list of URLs for the discovery Endpoints provided by the application.

If the applicationType is CLIENT_1, this field shall contain an empty list.

7.2 ApplicationInstanceCertificate

An ApplicationInstanceCertificate is a ByteString containing an encoded Certificate. The encoding of an ApplicationInstanceCertificate depends on the security technology mapping and is defined completely in Part 6. Table 104 specifies the information that shall be contained in an ApplicationInstanceCertificate.

Table 104 – ApplicationInstanceCertificate

	Name
	Type
	Description

	ApplicationInstanceCertificate
	structure
	ApplicationInstanceCertificate with signature created by a Certificate Authority.

	
version
	String
	An identifier for the version of the Certificate encoding.

	
serialNumber
	ByteString
	A unique identifier for the Certificate assigned by the Issuer.

	
signatureAlgorithm
	String
	The algorithm used to sign the Certificate.

The syntax of this field depends on the Certificate encoding.

	
signature
	ByteString
	The signature created by the Issuer.

	
issuer
	Structure
	A name that identifies the Issuer Certificate used to create the signature.

	
validFrom
	UtcTime
	When the Certificate becomes valid.

	
validTo
	UtcTime
	When the Certificate expires.

	
subject
	Structure
	A name that identifies the application instance that the Certificate describes.

This field shall contain the productName and the name of the organization responsible for the application instance.

	
applicationUri
	String
	The applicationUri specified in the ApplicationDescription.

The ApplicationDescription is described in 7.1.

	
hostnames []
	String
	The name of the machine where the application instance runs.

A machine may have multiple names if is accessible via multiple networks.

The hostname may be a numeric network address or a descriptive name.

Server Certificates shall have at least one hostname defined.

	
publicKey
	ByteString
	The public key associated with the Certificate.

	
keyUsage []
	String
	Specifies how the Certificate key may be used.

ApplicationInstanceCertificates shall support Digital Signature, Non-Repudiation Key Encryption, Data Encryption and Client/Server Authorization.

The contents of this field depend on the Certificate encoding.

7.3 BrowseResult

The components of this parameter are defined in Table 105.

Table 105 – BrowseResult
	Name
	Type
	Description

	BrowseResult
	structure
	The results of a Browse operation.

	
statusCode
	StatusCode
	The status for the BrowseDescription.

This value is set to Good_MoreReferencesExist if there are still references to return for the BrowseDescription.

	
continuationPoint
	ContinuationPoint
	A Server defined opaque value that identifies the continuation point.

The ContinuationPoint type is defined in 7.6.

	
References []
	ReferenceDescription
	The set of references that meet the criteria specified in the BrowseDescription.

Empty, if no References met the criteria.
The Reference Description type is defined in 7.24.

7.4 ContentFilter
7.4.1 ContentFilter structure
The ContentFilter structure defines a collection of elements that make up filtering criteria. Each element in the collection describes an operator and an array of operands to be used by the operator. The operators that can be used in a ContentFilter are described in Table 110. The filter is evaluated by evaluating the first entry in the element array starting with the first operand in the operand array. The operands of an element may contain References to sub-elements resulting in the evaluation continuing to the referenced elements in the element array. If an element cannot be traced back to the starting element it is ignored. Extra operands for any operator shall result in an error. Appendix B provides examples using the ContentFilter structure.
Table 106 defines the ContentFilter structure.

Table 106 – ContentFilter Structure

	Name
	Type
	Description

	ContentFilter
	structure
	

	
elements []
	ContentFilterElement
	List of operators and their operands that compose the filter criteria. The filter is evaluated by starting with the first entry in this array.

	

filterOperator
	enum

FilterOperator
	Filter operator to be evaluated.

The FilterOperator enumeration is defined in Table 110.

	

filterOperands []
	Extensible Parameter
FilterOperand
	Operands used by the selected operator. The number and use depend on the operators defined in Table 110. This array needs at least one entry.

This extensible parameter type is the FilterOperand parameter type specified in 7.4.4. It specifies the list of valid FilterOperand values.

7.4.2 ContentFilterResult

The components of this data type are defined in Table 107.

Table 107 – ContentFilterResult Structure

	Name
	Type
	Description

	ContentFilterResult
	structure
	A structure that contains any errors associated with the filter.

	
elementResults
	ContentFilter

ElementResult
	A list of results for individual elements in the filter. The size and order of the list matches the size and order of the elements in the ContentFilter parameter.

	

statusCode
	StatusCode
	The status code for a single element.

	

operandStatusCodes []
	StatusCode
	A list of status codes for the operands in an element. The size and order of the list matches the size and order of the operands in the ContentFilterElement. This list is empty if no operand errors occurred.

	

operandDiagnosticInfos []
	DiagnosticInfo
	A list of diagnostic information for the operands in an element. The size and order of the list matches the size and order of the operands in the ContentFilterElement. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the operands.

	
elementDiagnosticInfos []
	DiagnosticInfo
	A list of diagnostic information for individual elements in the filter. The size and order of the list matches the size and order of the elements in the filter request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the elements.

Table 108 defines values for the statusCode parameter that are specific to this structure. Common StatusCodes are defined in Table 166.
Table 108 – ContentFilterResult Result Codes

	Symbolic Id
	Description

	
	

	Bad_FilterOperandCountMismatch
	The number of operands provided for the filter operator was less then expected for the operand provided

	Bad_FilterOperatorInvalid
	An unregognized operator was provided in a filter

	Bad_FilterOperatorUnsupported
	A valid operator was provided, but the server does not provide support for this filter operator.

Table 109 defines values for the operandStatusCode parameter that are specific to this structure. Common StatusCodes are defined in Table 166.

Table 109 – ContentFilterResult Operand Result Codes

	Symbolic Id
	Description

	Bad_FilterOperandInvalid
	See Table 166 for the description of this result code.

	Bad_FilterElementInvalid
	The referenced element is not a valid element in the content filter

	Bad_FilterLiteralInvalid
	The referenced literal is not a valid basedatatype

	Bad_AttributeIdInvalid
	The attribute id is not a valid attribute id in the system

	Bad_IndexRangeInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdInvalid
	See Table 166 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.

	Bad_NotTypeDefinition
	The provided Nodeid was not a type definition nodeid.

7.4.3 FilterOperator
Table 110 defines the basic operators that can be used in a ContentFilter. See Table 111 for a description of advanced operators. See section 7.4.4 for a definition of operands.
Table 110 – Basic FilterOperator Definition

	Operator
	Number of Operands
	Description

	Equals_0
	2
	TRUE if operand[0] is equal to operand[1].
If the operands are of different types, the system shall perform any implicit conversion to a common type. This operator resolves to FALSE if no implicit conversion is available and the operands are of different types. This operator returns FALSE if the implicit conversion fails. See the discussion on data type precedence in Table 114 for more information how to convert operands of different types.

	IsNull_1
	1
	TRUE if operand[0] is a null value.

	GreaterThan_2
	2
	TRUE if operand[0] is greater than operand[1].
The following restrictions apply to the operands:

[0]:
Any operand that resolves to an ordered value.

[1]:
Any operand that resolves to an ordered value.

The same conversion rules as defined for Equals apply.

	LessThan_3
	2
	TRUE if operand[0] is less than operand[1].
The same conversion rules and restrictions as defined for GreaterThan apply.

	GreaterThanOrEqual_4
	2
	TRUE if operand[0] is greater than or equal to operand[1].
The same conversion rules and restrictions as defined for GreaterThan apply.

	LessThanOrEqual_5
	2
	TRUE if operand[0] is less than or equal to operand[1].
The same conversion rules and restrictions as defined for GreaterThan apply.

	Like_6
	2
	TRUE if operand[0] matches a pattern defined by operand[1]. See Table 112 for the definition of the pattern syntax.
The following restructions apply to the operands:

[0]:
Any operand that resolves to a String.

[1]:
Any operand that resolves to a String.

This operator resolves to FALSE if any operand can not be resolved to a string.

	Not_7
	1
	TRUE if operand[0] is FALSE.
The following restructions apply to the operands:

[0]:
Any operand that resolves to a Boolean.

If the operand can not be resolved to a Boolean, the result is a NULL. See below for a discussion on the handling of NULL.

	Between_8
	3
	TRUE if operand[0] is greater or equal to operand[1] and less than or equal to operand[2].
The following restructions apply to the operands:

[0]:
Any operand that resolves to an ordered value.

[1]:
Any operand that resolves to an ordered value.

[2]:
Any operand that resolves to an ordered value.

If the operands are of different types, the system shall perform any implicit conversion to match all operands to a common type. If no implicit conversion is available and the operands are of different types, the particular result is FALSE. See the discussion on data type precedence in Table 114 for more information how to convert operands of different types.

	InList_9
	2..n
	TRUE if operand[0] is equal to one or more of the remaining operands.
The Equals Operator is evaluated for operand[0] and each remaining operand in the list. If any Equals evaluation is TRUE, InList returns TRUE.

	And_10
	2
	TRUE if operand[0] and operand[1] are TRUE.
The following restructions apply to the operands:

[0]:
Any operand that resolves to a Boolean.

[1]:
Any operand that resolves to a Boolean.

If any operand can not be resolved to a Boolean it is considered a NULL. See below for a discussion on the handling of NULL.

	Or_11
	2
	TRUE if operand[0] or operand[1] are TRUE.
The following restructions apply to the operands:

[0]:
Any operand that resolves to a Boolean.

[1]:
Any operand that resolves to a Boolean.

If any operand can not be resolved to a Boolean it is considered a NULL. See below for a discussion on the handling of NULL.

	Cast_12
	2
	Converts operand[0] to a value with a data type with a NodeId identified by operand[1].

The following restructions apply to the operands:

[0]:
Any operand.

[1]:
Any operand that resolves to a NodeId or ExpandedNodeId where the Node is of the NodeClass DataType.

If there is any error in conversion or in any of the parameters then the Cast Operation evaluates to a NULL. See below for a discussion on the handling of NULL.

	BitwiseAnd_16
	2
	The result is an integer which matches the size of the largest operand and contains a bitwise And operation of the two operands where both have been converted to the lsame size (largest of the two operands)

The following restructions apply to the operands:

[0]:
Any operand that resolves to a integer.

[1]:
Any operand that resolves to a integer.

If any operand can not be resolved to a integer it is considered a NULL. See below for a discussion on the handling of NULL.

	BitwiseOr_17
	2
	The result is an integer which matches the size of the largest operand and contains a bitwise Or operation of the two operands where both have been converted to the lsame size (largest of the two operands)

The following restructions apply to the operands:

[0]:
Any operand that resolves to a Integer.

[1]:
Any operand that resolves to a Integer.

If any operand can not be resolved to a Integer it is considered a NULL. See below for a discussion on the handling of NULL.

Many operands have restrictions on their type. This requires that the operand be evaluated to determine what the type is. In some cases, the type specified in the operand (i.e. a LiteralOperand). In other cases the type requires that the value of an attribute be read. ElementOperands are Boolean values unless the operator is Cast or a nested RelatedTo operator.

Table 111 defines complex operators that require a target node (i.e. row) to evaluate. These operators shall be re-evaluated for each possible target node in the result set.

Table 111 – Complex FilterOperator Definition

	Operator
	Number of Operands
	Description

	InView_13
	1
	TRUE if the target Node is contained in the View defined by operand[0].
The following restrictions apply to the operands:

[0]:
Any operand that resolves to a NodeId that identifies a View Node.

If operand[0] does not resolve to a NodeId that identifies a View Node, this operation shall always be False.

	OfType_14
	1
	TRUE if the target Node is of type operand[0] or of a subtype of operand[0].
The following restrictions apply to the operands:

[0]:
Any operand that resolves to a NodeId that identifies an ObjectType or VariableType Node.

If operand[0] does not resolve to a NodeId that identifies an ObjectType or VariableType Node, this operation shall always be False.

	RelatedTo_15
	6
	TRUE if the target Node is of type Operand[0] and is related to a NodeId of the type defined in Operand[1] by the Reference type defined in Operand[2].
Operand[0] or Operand[1] can also point to an element Reference where the referred to element is another RelatedTo operator. This allows chaining of relationships (e.g. A is related to B is related to C). In this case, the referred to element returns a list of NodeIds instead of TRUE or FALSE. In this case if any errors occur or any of the operands can not be resolved to an appropriate value, the result of the chained relationship is an empty list of nodes.
Operand[3] defines the number of hops the relationship should be followed. If Operand[3] is 1, then objects shall be directly related. If a hop is greater than 1, then a NodeId of the type described in Operand[1] is checked for at the depth specified by the hop. In this case, the type of the intermediate Node is undefined, and only the Reference type used to reach the end Node is defined. If the requested number of hops cannot be followed, then the result is FALSE, i.e., an empty Node list. If Operand[3] is 0, the relationship is followed to its logical end in a forward direction and each Node is checked to be of the type specified in Operand[1]. If any Node satisfies this criteria, then the result is TRUE, i.e., the NodeId is included in the sub-list.
Operand [4] defines if Operands [0] and [1] should include support for subtypes of the types defined by these operands. A TRUE indicates support for subtypes

Operand [5] defines if Operands [3] should include support for subtypes the reference type defined by Operand[3]. A TRUE indicates support for subtypes.

The following restrictions apply to the operands:

[0]:
Any operand that resolves to a NodeId or ExpandedNodeId that identifies an ObjectType or VariableType Node or a reference to another element which is a RelatedTo operator.

[1]:
Any operand that resolves to a NodeId or ExpandedNodeId that identifies an ObjectType or VariableType Node or a reference to another element which is a RelatedTo operator.

[2]:
Any operand that resolves to a NodeId that identifies a ReferenceType Node.

[3]:
Any operand that resolves to a value implicitly convertible to Int32.

[4]:
Any operand that resolves to a value implicitly convertible to a boolean; if this operand does not resolve to a Boolean, then a value of FALSE is used.

[5]:
Any operand that resolves to a value implicitly convertible to a boolean; if this operand does not resolve to a Boolean, then a value of FALSE is used.

If any of the operands [0],[1],[2],[3] do not resolve to an appropriate value then the result of this operation shall always be False (or an Empty set in the case of a nested relatedTo operand).

See examples for RelatedTo in 7.4.4.

The RelatedTo operator can be used to identify if a given type, set as operand[1], is a subtype of another type set as operand[0] by setting operand[2] to the HasSubtype ReferenceType and operand[3] to 0.
The Like operator can be used to perform wildcard comparisons. Several special characters can be included in the second operand of the Like operator. The valid characters are defined in Table 112. The wildcard characters can be combined in a single string (i.e. ‘Th[ia][ts]%’ would match ‘That is fine’, ‘This is fine’, ‘That as one’, ‘This it is’, ‘Then at any’ etc.).
Table 112 – Wildcard characters

	Special Character
	Description

	%
	Match any string of zero or more characters (i.e. ‘main%’ would match any string that starts with ‘main’, ‘%en%’ would match any string that contains the letters ‘en’ such as ‘entail’, ‘green’ and ‘content’.) If a ‘%’ sign is intend in a string the list operand can be used (i.e. 5[%] would match ‘5%’).

	_
	Match any single character (i.e. ‘_ould’ would match ‘would’, ‘could’). If the ‘_’ is indended in a string then the list operand can be used (i.e. 5[_] would match ‘5_’).

	\
	Escape character allows literal interpretation

 (i.e. \\ is \, \% is %, _ is _)

	[]
	Match any single character in a list

(i.e. ‘abc[13-68] would match ‘abc1’,’abc3’,’abc4’,’abc5’,’abc6’, and ‘abc8’.

 ‘xyz[c-f]’ would match ‘xyzc’, ‘xyzd’, ‘xyze’, ‘xyzf’).

	[^]
	Not Matching any single character in a list.

The ^ shall be the first charcter inside on the [].
(i.e. ‘ABC[^13-5]’ would NOT match ‘ABC1’, ‘ABC3’, ‘ABC4’, and ‘ABC5’. xyz[^dgh] would NOT match ‘xyzd’, ‘xyzg’, ‘xyzh’.)

Table 113 defines the conversion rules for the operand values. The types are automatically converted if an implicit conversion exists (I). If an explicit conversion exists (E) then type can be converted with the cast operator. If no conversion exists (X) the then types cannot be converted, however, some servers may support application specific explicit conversions. The types used in the table are defined in Part 3. A data type that is not in the table does not have any defined conversions.
Table 113 – Conversion Rules
	Target Type (To)

	
	Source Type (From)

	
	Boolean
	Byte
	ByteString
	DateTime
	Double
	ExpandedNodeId
	Float
	Guid
	Int16
	Int32
	Int64
	NodeId
	SByte
	StatusCode
	String
	LocalizedText
	QualifiedName
	UInt16
	UInt32
	UInt64
	XmlElement

	Boolean
	-
	I
	X
	X
	I
	X
	I
	X
	I
	I
	I
	X
	I
	X
	E
	X
	X
	I
	I
	I
	X

	Byte
	E
	-
	X
	X
	I
	X
	I
	X
	I
	I
	I
	X
	I
	X
	E
	X
	X
	I
	I
	I
	X

	ByteString
	X
	X
	-
	X
	X
	X
	X
	E
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	DateTime
	X
	X
	X
	-
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	E
	X
	X
	X
	X
	X
	X

	Double
	E
	E
	X
	X
	-
	X
	E
	X
	E
	E
	E
	X
	E
	X
	E
	X
	X
	E
	E
	E
	X

	ExpandedNodeId
	X
	X
	X
	X
	X
	-
	X
	X
	X
	X
	X
	E
	X
	X
	I
	X
	X
	X
	X
	X
	X

	Float
	E
	E
	X
	X
	I
	X
	-
	X
	E
	E
	E
	X
	E
	X
	E
	X
	X
	E
	E
	E
	X

	Guid
	X
	X
	E
	X
	X
	X
	X
	-
	X
	X
	X
	X
	X
	X
	E
	X
	X
	X
	X
	X
	X

	Int16
	E
	E
	X
	X
	I
	X
	I
	X
	-
	I
	I
	X
	E
	X
	E
	X
	X
	E
	I
	I
	X

	Int32
	E
	E
	X
	X
	I
	X
	I
	X
	E
	-
	I
	X
	E
	E
	E
	X
	X
	E
	E
	I
	X

	Int64
	E
	E
	X
	X
	I
	X
	I
	X
	E
	E
	-
	X
	E
	E
	E
	X
	X
	E
	E
	E
	X

	NodeId
	X
	X
	X
	X
	X
	I
	X
	X
	X
	X
	X
	-
	X
	X
	I
	X
	X
	X
	X
	X
	X

	SByte
	E
	E
	X
	X
	I
	X
	I
	X
	I
	I
	I
	X
	-
	X
	E
	X
	X
	I
	I
	I
	X

	StatusCode
	X
	X
	X
	X
	X
	X
	X
	X
	X
	I
	I
	X
	X
	-
	X
	X
	X
	E
	I
	I
	X

	String
	I
	I
	X
	E
	I
	E
	I
	I
	I
	I
	I
	E
	I
	X
	-
	E
	E
	I
	I
	I
	X

	LocalizedText
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	I
	-
	X
	X
	X
	X
	X

	QualifiedName
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	I
	I
	-
	X
	X
	X
	X

	UInt16
	E
	E
	X
	X
	I
	X
	I
	X
	I
	I
	I
	X
	E
	I
	E
	X
	X
	-
	I
	I
	X

	UInt32
	E
	E
	X
	X
	I
	X
	I
	X
	E
	I
	I
	X
	E
	E
	E
	X
	X
	E
	-
	I
	X

	UInt64
	E
	E
	X
	X
	I
	X
	I
	X
	E
	E
	I
	X
	E
	E
	E
	X
	X
	E
	E
	-
	X

	XmlElement
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	-

Arrays of a source type can be converted to arrays of the target type by converting each element. A conversion error for any element causes the entire conversion to fail.

Arrays of length 1 can be implicitly converted to a scalar value of the same type.

Guid, NodeIds and ExpandedNodeIds are converted to and from Strings using the syntax defined in Part 6.

Floating point values are rounded by adding 0.5 and truncating when they are converted to integer values.
ByteStrings are converted to Strings by formatting the bytes as a sequence of hexadecimal digits.
LocalizedText values are converted to Strings by dropping the Locale. Strings are converted to LocalizedText values by setting the Locale to “”.

QualifiedName values are converted to Strings by dropping the NamespaceIndex. Strings are converted to QualifiedName values by setting the NamespaceIndex to 0.

A StatusCode can be converted to and from a UInt32 and Int32 by copying the bits. Only the top 16-bits if the StatusCode are copied when it is converted to and from a UInt16 or Int16 value.
Boolean values are converted to ‘1’ when true and ‘0’ when false. Non zero numeric values are converted to true Boolean values. Numeric values of 0 are converted to false Boolean values. String values containing “true”, “false”, “1” or “0” can be converted to Boolean values. Other string values cause a conversion error. In this case strings are case-insensitive.

It is sometimes possible to use implicit casts when operands with different data types are used in an operation. In this situation the precedence rules defined in Table 114 are used to determine which implicit conversion to use. The first data type in the list (top down) has the most precedence. If a data type is not in this table then it cannot be converted implicitly while evaluating an operation.

For example, assume that A = 1.1 (Float) and B = 1 (Int32) and that these values are used with an Equals operator. This operation would be evaluated by casting the Int32 value to a Float since the Float data type has more precedence.

Table 114 – Data Precedence Rules

	Rank
	Data Type

	1
	Double

	2
	Float

	3
	Int64

	4
	UInt64

	5
	Int32

	6
	UInt32

	7
	StatusCode

	8
	Int16

	9
	UInt16

	10
	SByte

	11
	Byte

	12
	Boolean

	13
	Guid

	14
	String

	15
	ExpandedNodeId

	16
	NodeId

	17
	LocalizedText

	18
	QualifiedName

Operands may contain null values (i.e. values which do not exist). When this happens the element always evaluates to NULL (unless the IsNull operator has been specified), Table 115 defines how to combine elements that evaluate to NULL with other elements in a logical AND operation.

Table 115 – Logical AND Truth Table

	
	TRUE
	FALSE
	NULL

	TRUE
	TRUE
	FALSE
	NULL

	FALSE
	FALSE
	FALSE
	FALSE

	NULL
	NULL
	FALSE
	NULL

Table 116 defines how to combine elements that evaluate to NULL with other elements in a logical OR operation.

Table 116 – Logical OR Truth Table

	
	TRUE
	FALSE
	NULL

	TRUE
	TRUE
	TRUE
	TRUE

	FALSE
	TRUE
	FALSE
	NULL

	NULL
	TRUE
	NULL
	NULL

The NOT operator always evaluates to NULL if applied to a NULL operand.

A ContentFilter which evaluates to NULL after all elements are evaluated is evaluated as false.

7.4.4 FilterOperand parameters

7.4.4.1 Overview

The ContentFilter structure specified in 7.4 defines a collection of elements that makes up filter criteria and contains different types of FilterOperands. The FilterOperand parameter is an extensible parameter. This parameter is defined in Table 117. The ExtensibleParamter type is defined in 7.11.
Table 117 – FilterOperand parameterTypeIds

	Symbolic Id
	Description

	Element
	Specifies an index into the array of elements. This type is use to build a logic tree of sub-elements by linking the operand of one element to a sub-element.

	Literal
	Specifies a literal value.

	Attribute
	Specifies any Attribute of an Object or Variable Node using a Node in the type system and relative path constructed from ReferenceTypes and BrowseNames.

	SimpleAttribute
	Specifies any Attribute of an Object or Variable Node using a TypeDefinition and a relative path constructed from BrowseNames.

7.4.4.2 ElementOperand

The ElementOperand provides the linking to sub-elements within a ContentFilter. The link is in the form of an integer that is used to index into the array of elements contained in the ContentFilter. An index is considered valid if its value is greater than the element index it is part of and it does not Reference a non-existent element. Clients shall construct filters in this way to avoid circular and invalid References. Servers should protect against invalid indexes by verifying the index prior to using it.

Table 118 defines the ElementOperand type.

Table 118 – ElementOperand

	Name
	Type
	Description

	ElementOperand
	structure
	ElementOperand value.

	
index
	UInt32
	Index into the element array.

7.4.4.3 LiteralOperand

Table 119 defines the LiteralOperand type.

Table 119 – LiteralOperand

	Name
	Type
	Description

	LiteralOperand
	structure
	LiteralOperand value.

	
value
	BaseDataType
	A literal value.

7.4.4.4 AttributeOperand

Table 120 defines the AttributeOperand type.

Table 120 – AttributeOperand

	Name
	Type
	Description

	AttributeOperand
	structure
	Attribute of a Node in the address space.

	
nodeId
	NodeId
	NodeId of a Node from the type system.

	
alias
	String
	An optional parameter used to identify or refer to an alias. An alias is a symbolic name that can be used to alias this operand and use it in other location in the filter structure.

	
browsePath
	RelativePath
	Browse path relative to the Node identified by the nodeId parameter. See 7.25 for the definition of RelativePath.

	
attributeId
	IntegerId
	Id of the Attribute. This shall be a valid Attribute id. The IntegerId is defined in 7.13. The IntegerIds for the Attributes are defined in Part 6.

	
indexRange
	NumericRange
	This parameter is used to identify a single element of an array or a single range of indexes for an array. The first element is identified by index 0 (zero).
The NumericRange type is defined in 7.21.

This parameter is not used if the specified Attribute is not an array. However, if the specified Attribute is an array and this parameter is not used, then all elements are to be included in the range. The parameter is null if not used.
Editor note: Support for structure and bit mask needs to be added.

7.4.4.5 SimpleAttributeOperand
The SimpleAttributeOperand is a simplified form of the AttributeOperand and all of the rules that apply to the AttributeOperand also apply to the SimpleAttributeOperand. The examples provided in B.1 only use AttributeOperands, however, the AttributeOperand can be replaced by a SimpleAttributeOperand whenever all ReferenceTypes in the RelativePath are subtypes of HierarchialReferences and the targets are Object or Variable Nodes and an Alias is not required.
Table 121 defines the SimpleAttributeOperand type.

Table 121 – SimpleAttributeOperand

	Name
	Type
	Description

	SimpleAttributeOperand
	structure
	Attribute of a Node in the address space.

	
typeId
	NodeId
	NodeId of a TypeDefinitionNode.
This parameter restricts the operand to instances of the TypeDefinitionNode or one of its subtypes.

	
browsePath[]
	QualifiedName
	A relative path to a Node.

This parameter specifies a relative path using a list of BrowseNames instead of the RelativePath structure used in the AttributeOperand. The list of BrowseNames is equivalent to a RelativePath that specifies forward references which are subtypes of the HierarchicalReferences ReferenceType.

All Nodes followed by the browsePath shall be of the NodeClass Object or Variable.

If this list is empty the Node is the instance of the TypeDefinition.

	
attributeId
	IntegerId
	Id of the Attribute. The IntegerId is defined in 7.13.
The Value Attribute shall be supported by all Servers. The support of other Attributes depends on requirements set in Profiles or other parts of this specification.

	
indexRange
	NumericRange
	This parameter is used to identify a single element of an array, or a single range of indexes for an array. The first element is identified by index 0 (zero).

This parameter is ignored if the selected Node is not a Variable or the Value of a Variable is not an array.

The parameter is null if not specifed.

All values in the array are used if this parameter is not specified.

The NumericRange type is defined in 7.21.

7.5 Counter

This primitive data type is a UInt32 that represents the value of a counter. The initial value of a counter is specified by its use. Modulus arithmetic is used for all calculations, where the modulus is max value + 1. Therefore,

x + y = (x + y)mod(max value + 1)

For example:

max value + 1 = 0

max value + 2 = 1
7.6 ContinuationPoint
A ContinuationPoint is used to pause a Browse or QueryFirst operation and allow it to be restarted later by calling BrowseNext or QueryNext. Operations are paused when the number of results found exceeds the limits set by either the Client or the Server.

The Client specifies the maximum number of results per operation in the request message. A Server shall not return more than this number of results but it may return fewer results. The Server allocates a ContinuationPoint if there are more results to return. The Server shall always return at least one result if it returns a ContinuationPoint.

Servers shall support at least one ContinuationPoint per Session. Servers specify a maximum number of ContinuationPoints per Session in the ServerCapabilities Object defined in Part 5. ContinuationPoints remain active until the Client retrieves the remaining results, the Client releases the ContinuationPoint or the Session is closed. A Server shall automatically free ContinuationPoints from prior requests if they are needed to process a new request. The Server returns a Bad_ContinuationPointInvalid error if a Client tries to use a ContinuationPoint that has been released.

Requests will often specify multiple operations that may or may not require a ContinuationPoint. A Server shall process the operations until it runs out of ContinuationPoints. Once that happens the Server shall return a Bad_NoContinuationPoints error for any remaining operations.

A Client restarts an operation by passing the ContinuationPoint back to the Server. Server should always be able to reuse the ContinuationPoint provided so Servers shall never return Bad_NoContinuationPoints error when continuing a previously halted operation.

A ContinuationPoint is a subtype of the ByteString data type.
7.7 DataValue

The components of this parameter are defined in Table 122.

Table 122 – DataValue

	Name
	Type
	Description

	DataValue
	structure
	The value and associated information.

	
value
	BaseDataType
	The data value.

	
statusCode
	StatusCode
	The StatusCode that defines with the Server’s ability to access/provide the value. The StatusCode type is defined in 7.33

	
sourceTimestamp
	UtcTime
	The source timestamp for the value.

	
sourcePicoSeconds
	UInteger
	Specifies the number of 10 picoseconds (1.0 e-11 seconds) intervals which shall be added to the sourceTimestamp.

	
serverTimestamp
	UtcTime
	The Server timestamp for the value.

	
serverPicoSeconds
	UInteger
	Specifies the number of 10 picoseconds (1.0 e-11 seconds) intervals which shall be added to the serverTimestamp.

PicoSeconds

Some applications require high resolution timestamps. The PicoSeconds fields allow applications to specify timestamps with 10 picosecond resolution. The actual size of the PicoSeconds field depends on the resolution of the UtcTime DataType. For example, if the UtcTime DataType has a resolution of 100 nanoseconds then the PicoSeconds field would have to store values up to 10000 in order to provide the 10 picosecond resolution. The resolution of the UtcTime DataType depends on the Mappings defined in Part 6.
SourceTimestamp

The sourceTimestamp is used to reflect the timestamp that was applied to a Variable value by the data source. Once a value has been assigned a source timestamp, the source timestamp for that value instance never changes. In this context, “value instance” refers to the value received, independent of its actual value.

The sourceTimestamp shall be UTC time and should indicate the time of the last change of the value or statusCode.

The sourceTimestamp should be generated as close as possible to the source of the value but the timestamp needs to be set always by the same physical clock. In the case of redundant sources, the clocks of the sources should be synchronised.

If the OPC UA Server receives the Variable value from another OPC UA Server, then the OPC UA Server shall always pass the source timestamp without changes. If the source that applies the timestamp is not available, the source time stamp is set to null. For example if a value could not be read because of some error during processing like invalid arguments passed in the request then the sourceTimestamp shall be null.
In the case of a bad or uncertain status sourceTimestamp is used to reflect the time that the source recognized the non-good status or the time the Server last tried to recover from the bad or uncertain status.
The sourceTimestamp is only returned with a Value Attribute. For all other Attributes the returned sourceTimestamp is set to null.
ServerTimestamp

The serverTimestamp is used to reflect the time that the Server received a Variable value or knew it to be accurate.

In the case of a bad or uncertain status, serverTimestamp is used to reflect the time that the Server received the status or that the Server last tried to recover from the bad or uncertain status.

In the case where the OPC UA Server subscribes to a value from another OPC UA Server, each Server applies its own serverTimestamp. This is in contrast to the sourceTimestamp in which only the originator of the data is allowed to apply the sourceTimestamp.

If the Server is subscribing to the value from another Server every ten seconds and the value changes, then the serverTimestamp is updated each time a new value is received. If the value does not change, then new values will not be received on the Subscription. However, in the absence of errors, the receiving Server applies a new serverTimestamp every ten seconds because not receiving a value means that the value has not changed. Thus, the serverTimestamp reflects the time at which the Server knew the value to be accurate.

This concept also applies to OPC UA Servers that receive values from exception-based data sources. For example, suppose that a Server is receiving values from an exception-based device, and that

a) the device is checking values every 0.5 second,

b) the connection to the device is good,

c) the device sent an update three minutes ago with a value of 1.234.

In this case, the Server value would be 1.234 and the serverTimestamp would be updated every 0.5 seconds after the receipt of the value.

StatusCode assigned to a value

The StatusCode is used to indicate the conditions under which a Variable value was generated, and thereby can be used as an indicator of the usability of the value. The StatusCode is defined in Cause 7.33.

Overall condition (severity):

· A StatusCode with severity Good means that the value is of good quality.

· A StatusCode with severity Uncertain means that the quality of the value is uncertain for reasons indicated by the Substatus.

· A StatusCode with severity Bad means that the value is not usable for reasons indicated by the Substatus.

Rules:

· The StatusCode indicates the usability of the value. Therefore, It is required that Clients minimally check the StatusCode Severity of all results - even if they do not check the other fields - before accessing and using the value.

· A Server, which does not support status information, shall return a severity code of Good. It is also acceptable for a Server to simply return a severity and a non-specific (0) Substatus.

· If the Server has no known value - in particular when Severity is BAD - it shall return a NULL value.

7.8 DiagnosticInfo

The components of this parameter are defined in Table 123.

Table 123 – DiagnosticInfo

	Name
	Type
	Description

	DiagnosticInfo
	structure
	Vendor-specific diagnostic information.

	
identifier
	structure
	The vendor-specific identifier of an error or condition.

	

namespaceUri
	Int32
	The symbolic id defined by the symbolicIdIndex parameter is defined within the context of a namespace. This namespace is represented as a string and is conveyed to the Client in the stringTable parameter of the ResponseHeader parameter defined in 7.27. The namespaceIndex parameter contains the index into the stringTable for this string. -1 indicates that no string is specified.

	

symbolicId
	Int32
	A vendor-specific symbolic identifier string identifies an error or condition. The maximum length of this string is 32 characters. Servers wishing to return a numeric return code should convert the return code into a string and return the string in this identifier.

This symbolic identifier string is conveyed to the Client in the stringTable parameter of the ResponseHeader parameter defined in 7.27. The symbolicIdIndex parameter contains the index into the stringTable for this string. -1 indicates that no string is specified.

	

locale
	Int32
	The locale part of the vendor-specific localized text describing the symbolic id.

This localized text string is conveyed to the Client in the stringTable parameter of the ResponseHeader parameter defined in 7.27. The localizedTextIndex parameter contains the index into the stringTable for this string. -1 indicates that no string is specified.

	

localizedText
	Int32
	A vendor-specific localized text string describes the symbolic id. The maximum length of this text string is 256 characters.

This localized text string is conveyed to the Client in the stringTable parameter of the ResponseHeader parameter defined in 7.27. The localizedTextIndex parameter contains the index into the stringTable for this string. -1 indicates that no string is specified.

	
additionalInfo
	String
	Vendor-specific diagnostic information.

	
innerStatusCode
	StatusCode
	The StatusCode from the inner operation.

Many applications will make calls into underlying systems during OPC UA request processing. An OPC UA Server has the option of reporting the status from the underlying system in the diagnostic info.

	
innerDiagnosticInfo
	DiagnosticInfo
	The diagnostic info associated with the inner StatusCode.

7.9 EndpointDescription
The components of this parameter are defined in Table 124.

Table 124 – EndpointDescription
	Name
	Type
	Description

	EndpointDescription
	structure
	Describes an Endpoint for a Server.

	

endpointUrl
	String
	The URL for the Endpoint described.

	

server
	ApplicationDescription
	The description for the Server that the Endpoint belongs to.
The ApplicationDescription type is defined in 7.1.

	

serverCertificate
	ApplicationInstance

Certificate
	The application instance Certificate issued to the Server.

The ApplicationInstanceCertificate type is defined in 7.2.

	

securityMode
	Enum

MessageSecurityMode
	The type of security to apply to the messages.
The type MessageSecurityMode type is defined in 7.14.
A SecureChannel may have to be created even if the securityMode is NONE. The exact behaviour depends on the mapping used and is described in the Part 6.

	

securityPolicyUri
	String
	The URI for SecurityPolicy to use when securing messages.

The set of known URIs and the SecurityPolicies associated with them are defined in Part 7.

	

userIdentityTokens[]
	UserTokenPolicy
	The user identity tokens that the Server will accept.

The Client shall pass one of the UserIdentityTokens in the ActivateSession request. The UserTokenPolicy type is described in 7.36.

	

transportProfileUri
	String
	The URI of the Transport Profile supported by the Endpoint.

Part 7 defines URIs for the Transport Profiles.

	

securityLevel
	Byte
	A numeric value that indicates how secure the EndpointDescription is compared to other EndpointDescriptions for the same Server.

A value of 0 indicates that the EndpointDescription is not recommended and is only supported for backward compatibility.

7.10 ExpandedNodeId

The components of this parameter are defined in Table 125. ExpandedNodeIds allow the namespace to be specified explicitly as a string or with an index in the Server's namespace table.

Table 125 – ExpandedNodeId

	Name
	Type
	Description

	ExpandedNodeId
	structure
	The NodeId with the namespace expanded to its string representation.

	
serverIndex
	Index
	Index that identifies the Server that contains the TargetNode. This Server may be the local Server or a remote Server.

This index is the index of that Server in the local Server’s Server table. The index of the local Server in the Server table is always 0. All remote Servers have indexes greater than 0. The Server table is contained in the Server Object in the AddressSpace (see Part 3 and Part 5).

The Client may read the Server table Variable to access the description of the target Server

	
namespaceUri
	String
	The URI of the namespace.

If this parameter is specified then the namespace index is ignored.

 5.4 and Part 12 describes discovery mechanism that can be used to resolve URIs into URLs.

	
namespaceIndex
	Index
	The index in the Server's namespace table.

This parameter shall be 0 and is ignored in the Server if the namespace URI is specified.

	
identifierType
	IdType
	Type of the identifier element of the NodeId.

	
identifier
	*
	The identifier for a Node in the address space of an OPC UA Server. (see NodeId definition in Part 3).

7.11 ExtensibleParameter

The extensible parameter types can only be extended by additional parts of this multi-part specification.

The ExtensibleParameter defines a data structure with two elements. The parameterTypeId specifies the data type encoding of the second element. Therefore the second element is specified as “--“. The ExtensibleParameter base type is defined in Table 126.

Concrete extensible parameters that are common to OPC UA are defined in Clause 7. Additional parts of this multi-part specification can define additional extensible parameter types.

Table 126 – ExtensibleParameter Base Type

	Name
	Type
	Description

	ExtensibleParameter
	structure
	Specifies the details of an extensible parameter type.

	
parameterTypeId
	NodeId
	Identifies the data type of the parameter that follows.

	
parameterData
	--
	The details for the extensible parameter type.

7.12 Index

This primitive data type is an UInt32 that identifies an element of an array.

7.13 IntegerId

This primitive data type is an UInt32 that is used as an identifier, such as a handle. All values, except for 0, are valid.

7.14 MessageSecurityMode

The MessageSecurityMode is an enumeration that specifies what security should be applied to messages exchanges during a Session. The possible values are described in Table 127.

Table 127 – MessageSecurityMode Values

	Value
	Description

	INVALID_0
	The MessageSecurityMode is invalid.
This value is the default value to avoid an accidental choice of no security. This choice will always be rejected.

	NONE_1
	No security is applied.

	SIGN_2
	All messages are signed but not encrypted.

	SIGNANDENCRYPT_3
	All messages are signed and encrypted.

7.15 MonitoringParameters
The components of this parameter are defined in Table 128.

Table 128 – MonitoringParameters
	Name
	Type
	Description

	MonitoringParameters
	structure
	Parameters that define the monitoring characteristics of a MonitoredItem.

	
clientHandle
	IntegerId
	Client-supplied id of the MonitoredItem. This id is used in Notifications generated for the list Node. The IntegerId type is defined in 7.13.

	
samplingInterval
	Duration
	The interval that defines the fastest rate at which the MonitoredItem(s) should be accessed and evaluated. This interval is defined in milliseconds.

The value 0 indicates that the Server should use the fastest practical rate.

The value -1 indicates that the default sampling interval defined by the publishing rate of the Subscription is used.

The Server uses this parameter to assign the MonitoredItems to a sampling interval that it supports.

	
filter
	Extensible Parameter
MonitoringFilter
	A filter used by the Server to determine if the MonitoredItem should generate a Notification. If not used, this parameter is null. The MonitoringFilter parameter type is an extensible parameter type specified in 7.16. It specifies the types of filters that can be used.

	
queueSize
	Counter
	The requested size of the MonitoredItem queue. If Events are lost an Event of the type EventQueueOverflow is generated.

The following values have special meaning:

Value
Meaning

1
the queue has a single entry, effectively disabling queuing.

>1
a first-in-first-out queue is to be used.

Max Value
the max size that the Server can support. This is used for Event Notifications. In this case the Server is responsible for the Event buffer.
If 0 is passed by the client, the server returns the default queue size which shall be 1 as revisedQueueSize for data monitored items and shall be the server supported maximum as revisedQueueSize for event monitored items.

	
discardOldest
	Boolean
	A boolean parameter that specifies the discard policy when the queue is full and a new Notification is to be enqueued. It has the following values:

TRUE
the oldest (first) Notification in the queue is discarded. The new Notification is added to the end of the queue.

FALSE
the new Notification is discarded. The queue is unchanged.

7.16 MonitoringFilter parameters

7.16.1 Overview

The CreateMonitoredItem Service allows specifying a filter for each MonitoredItem. The MonitoringFilter is an extensible parameter whose structure depends on the type of item being monitored. The parameterTypeIds are defined in Table 129. Other types can be defined by additional parts of this multi-part specification or other specifications based on OPC UA. The ExtensibleParamter type is defined in 7.11.
Each MonitoringFilter may have an associated MonitoringFilterResult structure which returns revised parameters and/or error information to clients in the response. The result structures, when they exist, are described in the section that defines the MonitoringFilter.
Table 129 – MonitoringFilter parameterTypeIds

	Symbolic Id
	Description

	DataChangeFilter
	The change in a data value that shall cause a Notification to be generated.

	EventFilter
	If a Notification conforms to the EventFilter, the Notification is sent to the Client.

	AggregateFilter
	The aggregate and its intervals when it will be calculated and a Notification is generated.

7.16.2 DataChangeFilter

The DataChangeFilter defines the conditions under which a data change notification should be reported and, optionally, a range or band for value changes where no DataChange Notification is generated. This range is called Deadband. The DataChangeFilter is defined in Table 130.

Table 130 – DataChangeFilter

	Name
	Type
	Description

	DataChangeFilter
	structure
	

	
trigger
	enum

DataChangeTrigger
	Specifies the conditions under which a data change notification should be reported. It has the following values :

STATUS_0
Report a notification ONLY if the StatusCode associated with the value changes. See Table 166 for StatusCodes defined in this Part. Part 8 specifies additional StatusCodes that are valid in particular for device data

STATUS_VALUE_1
Report a notification if either the StatusCode or the value change. The Deadband filter can be used in addition for filtering value changes.

This is the default setting if no filter is set.

STATUS_VALUE_TIMESTAMP_2
Report a notification if either StatusCode, value or the SourceTimestamp change. The Deadband filter can be used in addition for filtering value changes.

If the DataChangeFilter is not applied to the monitored item, STATUS_VALUE_1 is the default reporting behaviour.

	
deadbandType
	UInt32
	A value that defines the Deadband type and behaviour.

Value

deadbandType

None_0

No Deadband calculation should be applied.

Absolute_1

AbsoluteDeadband (see below)

Percent_2

PercentDeadband (This type is specified in Part 8).

	
deadbandValue
	Double
	The Deadband is applied only if

* the trigger includes value changes and

* the deadbandType is set appropriately.

Deadband is ignored if the status of the data item changes.

DeadbandType = AbsoluteDeadband:

For this type the deadbandValue contains the absolute change in a data value that shall cause a Notification to be generated. This parameter applies only to Variables with any number data type.

An exception that causes a DataChange Notification based on an AbsoluteDeadband is determined as follows:

Exception if (absolute value of (last cached value - current value) > AbsoluteDeadband)

The last cached value is defined as the most recent value previously sent to the Notification channel.

If the item is an array of values, the entire array is returned if any array element exceeds the AbsoluteDeadband.

DeadbandType = PercentDeadband:

This type is specified in Part 8

The DataChangeFilter does not have an associated result structure.
7.16.3 EventFilter

The EventFilter provides for the filtering and content selection of Event Subscriptions.

If an Event Notification conforms to the filter defined by the where parameter of the EventFilter, then the Notification is sent to the Client.

Each Event Notification shall include the fields defined by the selectClauses parameter of the EventFilter. The defined EventTypes are specified in Part 5.
The selectClause and whereClause parameters are specified with the SimpleAttributeOperand structure (see 7.4.4.5). This structure requires the NodeId of an EventType supported by the Server and a path to an InstanceDeclaration. An InstanceDeclaration is a Node which can be found by following forward hierarchical references from the fully inherited EventType where the Node is also the source of a HasModellingRule reference. EventTypes, InstanceDeclarations and Modelling Rules are described completely in Part 3.

In some cases the same BrowsePath will apply to multiple EventTypes. If the Client specifies the BaseEventType in the SimpleAttributeOperand then the Server shall evaluate the BrowsePath without considering the Type.
Each InstanceDeclaration in the path shall be Object or Variable Node. The final Node in the path may be an Object Node, however, Object Nodes are only available for Events which are visible in the Server’s Address Space.

The SimpleAttributeOperand structure allows the Client to specify any Attribute, however, the Server is only required to support the Value Attribute for Variable Nodes and the NodeId Attribute for Object Nodes. That said, profiles defined in Part 7 may make support for additional Attributes mandatory.

The SimpleAttributeOperand structure is used in the selectClause to select the value to return if an Event meets the criteria specified by the whereClause. A null value is returned in the corresponding event field in the Publish response if the selected field is not part of the Event or an error was returned in the selectClauseResults of the EventFilterResult. If the selected field is available but cannot be returned to Client then the Server shall return a StatusCode that indicates the reason for the error. For example, the Server shall return a Bad_UserAccessDenied error if the value is not accessible to the user associated with the Session. If a Value Attribute has an uncertain or bad StatusCode associated with it then the Server shall return the StatusCode instead of the Value.

The Server shall validiate the selectClauses when a Client creates or updates the EventFilter. Any errors which are true for all possible Events are returned in the selectClauseResults parameter described in Table 132. The Server shall not report errors that might occur depending on the state or the Server or type of Event. For example, a selectClause that requests a single element in an array would always produce an error if the DataType of the Attribute is a scalar. However, even if the DataType is an array an error could occur if the requested index does not exist for a particular Event, the Server would not report an error in the selectClauseResults parameter if the latter situation existed.

The SimpleAttributeOperand is used in the whereClause to select a value which forms part of a logical expression. These logical expressions are then used to determine whether a particular Event should be reported to the Client. The Server shall use a null value for if any error occurs when a whereClause is evaluated for a particular Event. If a Value Attribute has an uncertain or bad StatusCode associated with it then the Server shall use a null value instead of the Value.

Any basic FilterOperator in Table 110 may be used in the whereClause, however, only the OfType FilterOperator from Table 111 is permitted.

The Server shall validiate the whereClauses when a Client creates or updates the EventFilter. Any structural errors in the construction of the filter and any errors which are true for all possible Events are returned in the whereClauseResult parameter described in Table 132. Errors that could occur depending on the state of the Server or the Event are not reported.
SubscriptionControlEvents are special Events which are used to provide control information to the Client. These Events are only published to the MonitoredItems in the Subscription that produced the SubscriptionControlEvent. These Events bypass the whereClause.
Table 131 defines the EventFilter structure.

Table 131 – EventFilter structure

	Name
	Type
	Description

	EventFilter
	structure
	

	
selectClauses []
	SimpleAttribute

Operand
	List of the values to return with each Event in a Notification. At least one valid clause shall be specified. See 7.4.4.5 for the definition of SimpleAttributeOperand.

	
whereClause
	ContentFilter
	Limit the Notifications to those Events that match the criteria defined by this ContentFilter. The ContentFilter structure is described in 7.4.
The AttributeOperand structure may not be used in EventFilters.

Table 132 defines the EventFilterResult structure.

Table 132 – EventFilterResult structure

	Name
	Type
	Description

	EventFilterResult
	structure
	

	
selectClauseResults[]
	StatusCode
	List of status codes for the elements in the select clause. The size and order of the list matches the size and order of the elements in the selectClauses request parameter. The Server returns null for unavailable or rejected Event fields.

	
selectClauseDiagnosticInfos[]
	DiagnosticInfo
	A list of diagnostic information for individual elements in the select clause. The size and order of the list matches the size and order of the elements in the selectClauses request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the select clauses.

	
whereClauseResult
	ContentFilter
Result
	An results associated with the whereClause request parameter.

The ContentFilterResult type is defined in 7.4.2.

Table 133 defines values for the selectClauseResults parameter. Common StatusCodes are defined in Table 166.
Table 133 – EventFilterResult Result Codes

	Symbolic Id
	Description

	Bad_TypeDefinitionInvalid
	See Table 166 for the description of this result code.
The typeId is not the NodeId for BaseEventType or a subtype of it

	Bad_NodeIdUnknown
	See Table 166 for the description of this result code.
The browsePath is specified but it will never exist in any Event.

	Bad_BrowseNameInvalid
	See Table 166 for the description of this result code.
The browsePath is specified and contains a null element

	Bad_AttributeIdInvalid
	See Table 166 for the description of this result code.
The node specified by the browse path will never allow the given attribute id to be returned.

	Bad_IndexRangeInvalid
	See Table 166 for the description of this result code.

	Bad_TypeMismatch
	See Table 166 for the description of this result code.
The indexRange is valid but the value of the Attribute is never an array.

7.16.4 AggregateFilter

The AggregateFilter defines the aggregate function that should be used to calculate the values to be returned. See Part 13 for details on possible aggregate functions. It specifies a startTime of the first aggregate to be calculated. The samplingInterval of the MonitoringAttributes (see 7.15) defines how the server should internally sample the underlying data source. The processingInterval specifies the size of a period where the aggregate is calculated. The queueSize from the MonitoringAttributes specifies the number of processed values that should be kept.

The intention of the AggregateFilter is not to read historical data, the HistoryRead service should be used for this purpose. However, it is allowed that the startTime is set to a time that is in the past when received from the server. The number of aggregates to be calculated in the past should not exceed the queueSize defined in the MonitoringAttributes since the values exceeding the queueSize would directly be discharged and never returned to the client.

The startTime and the processingInterval can be revised by the server, but the startTime should remain in the same boundary (startTime + revisedProcessingInterval * n = revisedStartTime). That behaviour simplifies accessing historical values of the aggregates using the same boundaries by calling the HistoryRead service. The extensible Parameter AggregateFilterResult is used to return the revised values for the AggregateFilter.

Some underlying systems may poll data and produce multiple samples with the same value. Other systems may only report changes to the values. The definition for each aggregate type explains how to handle the two different scenarios.

The MonitoredItem only reports values for intervals that have completed when the publish timer expires. Unused data is carried over and used to calculate a value returned in the next publish.

The ServerTimestamp for each interval shall be the time of the end of the processing interval.

The AggregateFilter is defined in Table 134.

Table 134 – AggregateFilter structure

	Name
	Type
	Description

	AggregateFilter
	structure
	

	
startTime
	UtcTime
	Beginning of period to calculate the aggregate the first time. The size of each period used to calculate the aggregate is defined by the samplingInterval of the MonitoringAttributes (see 7.15).

	
aggregateType
	NodeId
	The NodeId of the HistoryAggregate object that indicates the list of Aggregates to be used when retrieving processed data. See Part 13 for details.

	
processingInterval
	Duration
	The period be used to compute the aggregate.

	
aggregateConfiguration
	Aggregate
Configuration
	This parameter allows Clients to override the Aggregate configuration settings supplied by the AggregateConfiguration object on a per monitored item basis. See Part 13 for more information on Aggregate configurations. If the Server does not support the ability to override the Aggregate configuration settings it shall return a StatusCode of Bad_AggregateListMismatch.

	

useSeverCapabilities

Defaults
	Boolean
	If value = TRUE use Aggregate configuration settings as outlined by the AggregateConfiguration object.
If value=FALSE use configuration settings as outlined in the following aggregateConfiguration parameters.
Default is TRUE.

	

treatUncertainAsBad
	Boolean
	As described in Part 13.

	

percentDataBad
	Byte
	As described in Part 13.

	

percentDataGood
	Byte
	As described in Part 13.

	

steppedSloped

Extrapolation
	Boolean
	As described in Part 13.

The AggregateFilterResult defines the revised AggregateFilter the server can return when an AggregateFilter is defined for a MonitoredItem in the CreateMonitoredItems or ModifyMonitoredItems services. The AggregateFilterResult is defined in Table 135.
Table 135 – AggregateFilterResult structure

	Name
	Type
	Description

	AggregateFilterResult
	structure
	

	
revisedStartTime
	UtcTime
	The actual StartTime interval that the Server shall use.

This value is based on a number of factors, including capabilities of the server to access historical data. The revisedStartTime should remain in the same boundary as the startTime (startTime + samplingInterval * n = revisedStartTime).

	
revisedProcessingInterval
	Duration
	The actual processingInterval that the Server shall use.
The revisedProcessingInterval shall be at least two times the revisedSamplingInterval for the MonitoredItem.

7.17 MonitoringMode

The MonitoringMode is an enumeration that specifies whether sampling and reporting are enabled or disabled for a MonitoredItem. The value of the publishing enabled parameter for a Subscription does not affect the value of the monitoring mode for a MonitoredItem of the Subscription. The values of this parameter are defined in Table 136.

Table 136 – MonitoringMode Values

	Value
	Description

	DISABLED_0
	The item being monitored is not sampled or evaluated, and Notifications are not generated or queued. Notification reporting is disabled.

	SAMPLING_1
	The item being monitored is sampled and evaluated, and Notifications are generated and queued. Notification reporting is disabled.

	REPORTING_2
	The item being monitored is sampled and evaluated, and Notifications are generated and queued. Notification reporting is enabled.

7.18 NodeAttributes parameters

7.18.1 Overview

The AddNodes Service allows specifying the Attributes for the Nodes to add. The NodeAttributes is an extensible parameter whose structure depends on the type of the Attribute being added. It identifies the NodeClass that defines the structure of the Attributes that follow. The parameterTypeIds are defined in Table 137. The ExtensibleParamter type is defined in 7.11.

Table 137 – NodeAttributes parameterTypeIds

	Symbolic Id
	Description

	ObjectAttributes
	Defines the Attributes for the Object NodeClass.

	VariableAttributes
	Defines the Attributes for the Variable NodeClass.

	MethodAttributes
	Defines the Attributes for the Method NodeClass.

	ObjectTypeAttributes
	Defines the Attributes for the ObjectType NodeClass.

	VariableTypeAttributes
	Defines the Attributes for the VariableType NodeClass.

	ReferenceTypeAttributes
	Defines the Attributes for the ReferenceType NodeClass.

	DataTypeAttributes
	Defines the Attributes for the DataType NodeClass.

	ViewAttributes
	Defines the Attributes for the View NodeClass.

Table 138 defines the bit mask used in the NodeAttributes parameters to specify which Attributes are set by the Client.

Table 138 – Bit mask for specified Attributes
	Field
	Bit
	Description

	AccessLevel
	0
	Indicates if the AccessLevel Attribute is set.

	ArrayDimensions
	1
	Indicates if the ArrayDimensions Attribute is set.

	Reserved
	2
	Reserved to be consistent with WriteMask defined in Part 3.

	ContainsNoLoops
	3
	Indicates if the ContainsNoLoops Attribute is set.

	DataType
	4
	Indicates if the DataType Attribute is set.

	Description
	5
	Indicates if the Description Attribute is set.

	DisplayName
	6
	Indicates if the DisplayName Attribute is set.

	EventNotifier
	7
	Indicates if the EventNotifier Attribute is set.

	Executable
	8
	Indicates if the Executable Attribute is set.

	Historizing
	9
	Indicates if the Historizing Attribute is set.

	InverseName
	10
	Indicates if the InverseName Attribute is set.

	IsAbstract
	11
	Indicates if the IsAbstract Attribute is set.

	MinimumSamplingInterval
	12
	Indicates if the MinimumSamplingInterval Attribute is set.

	Reserved
	13
	Reserved to be consistent with WriteMask defined in Part 3.

	Reserved
	14
	Reserved to be consistent with WriteMask defined in Part 3.

	Symmetric
	15
	Indicates if the Symmetric Attribute is set.

	UserAccessLevel
	16
	Indicates if the UserAccessLevel Attribute is set.

	UserExecutable
	17
	Indicates if the UserExecutable Attribute is set.

	UserWriteMask
	18
	Indicates if the UserWriteMask Attribute is set.

	ValueRank
	19
	Indicates if the ValueRank Attribute is set.

	WriteMask
	20
	Indicates if the WriteMask Attribute is set.

	Value
	21
	Indicates if the Value Attribute is set.

	Reserved
	22:32
	Reserved for future use. Shall always be zero.

7.18.2 ObjectAttributes parameter

Table 139 defines the ObjectAttributes parameter.

Table 139 – ObjectAttributes

	Name
	Type
	Description

	ObjectAttributes
	structure
	Defines the Attributes for the Object NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
eventNotifier
	Byte
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.3 VariableAttributes parameter

Table 140 defines the VariableAttributes parameter.

Table 140 – VariableAttributes

	Name
	Type
	Description

	VariableAttributes
	structure
	Defines the Attributes for the Variable NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
value
	Defined by the DataType Attribute
	See Part 3 for the description of this Attribute.

	
dataType
	NodeId
	See Part 3 for the description of this Attribute.

	
valueRank
	Int32
	See Part 3 for the description of this Attribute.

	
arrayDimensions
	UInt32[]
	See Part 3 for the description of this Attribute.

	
accessLevel
	Byte
	See Part 3 for the description of this Attribute.

	
userAccessLevel
	Byte
	See Part 3 for the description of this Attribute.

	
minimumSamplingInterval
	Duration
	See Part 3 for the description of this Attribute.

	
historizing
	Boolean
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.4 MethodAttributes parameter

Table 141 defines the MethodAttributes parameter.

Table 141 – MethodAttributes

	Name
	Type
	Description

	BaseAttributes
	structure
	Defines the Attributes for the Method NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
executable
	Boolean
	See Part 3 for the description of this Attribute.

	
userExecutable
	Boolean
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.5 ObjectTypeAttributes parameter

Table 142 defines the ObjectTypeAttributes parameter.

Table 142 – ObjectTypeAttributes

	Name
	Type
	Description

	ObjectTypeAttributes
	structure
	Defines the Attributes for the ObjectType NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
isAbstract
	Boolean
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.6 VariableTypeAttributes parameter

Table 143 defines the VariableTypeAttributes parameter.

Table 143 – VariableTypeAttributes

	Name
	Type
	Description

	VariableTypeAttributes
	structure
	Defines the Attributes for the VariableType NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
value
	Defined by the DataType Attribute
	See Part 3 for the description of this Attribute.

	
dataType
	NodeId
	See Part 3 for the description of this Attribute.

	
valueRank
	Int32
	See Part 3 for the description of this Attribute.

	
arrayDimensions
	UInt32[]
	See Part 3 for the description of this Attribute.

	
isAbstract
	Boolean
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.7 ReferenceTypeAttributes parameter

Table 144 defines the ReferenceTypeAttributes parameter.

Table 144 – ReferenceTypeAttributes

	Name
	Type
	Description

	ReferenceTypeAttributes
	structure
	Defines the Attributes for the ReferenceType NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
isAbstract
	Boolean
	See Part 3 for the description of this Attribute.

	
symmetric
	Boolean
	See Part 3 for the description of this Attribute.

	
inverseName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.8 DataTypeAttributes parameter

Table 145 defines the DataTypeAttributes parameter.

Table 145 – DataTypeAttributes

	Name
	Type
	Description

	DataTypeAttributes
	structure
	Defines the Attributes for the DataType NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
isAbstract
	Boolean
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.18.9 ViewAttributes parameter

Table 146 defines the ViewAttributes parameter.

Table 146 – ViewAttributes

	Name
	Type
	Description

	ViewAttributes
	structure
	Defines the Attributes for the View NodeClass

	
specifiedAttributes
	UInt32
	A bit mask that indicates which fields contain valid values.

A field shall be ignored if the corresponding bit is set to 0.

The bit values are defined in Table 138.

	
displayName
	LocalizedText
	See Part 3 for the description of this Attribute.

	
description
	LocalizedText
	See Part 3 for the description of this Attribute.

	
containsNoLoops
	Boolean
	See Part 3 for the description of this Attribute.

	
eventNotifier
	Byte
	See Part 3 for the description of this Attribute.

	
writeMask
	UInt32
	See Part 3 for the description of this Attribute.

	
userWriteMask
	UInt32
	See Part 3 for the description of this Attribute.

7.19 NotificationData parameters

7.19.1 Overview

The NotificationMessage structure used in the Subscription Service set allows specifying different types of NotificationData. The NotificationData parameter is an extensible parameter whose structure depends on the type of Notification being sent. This parameter is defined in Table 147. Other types can be defined by additional parts of this multi-part specification or other specifications based on OPC UA. The ExtensibleParamter type is defined in 7.11.
There may be multiple notifications for a single MonitoredItem in a single NotificationData structure. When that happens the Server shall ensure the notifications appear in the same order that they were queued in the MonitoredItem. Theses notifications do not need to appear as a contiguous block.
Table 147 – NotificationData parameterTypeIds

	Symbolic Id
	Description

	DataChange
	Notification data parameter used for data change Notifications.

	Event
	Notification data parameter used for Event Notifications.

	StatusChange
	Notification data parameter used for Subscription status change Notifications

7.19.2 DataChangeNotification parameter
Table 148 defines the NotificationData parameter used for data change notifications. This structure contains the monitored data items that are to be reported. Monitored data items are reported under two conditions:

a) If the MonitoringMode is set to REPORTING and a change in value or its status (represented by its StatusCode) is detected.

b) If the MonitoringMode is set to SAMPLING, the MonitoredItem is linked to a triggering item and the triggering item triggers.

See 5.12 for a description of the MonitoredItem Service set, and in particular the MonitoringItemModel and the TriggeringModel.
After creating a MonitoredItem the current value or status of the monitored Attribute shall be queued without applying the filter. If the current value is not available after the first sampling interval the first Notification shall be queued after getting the initial value or status from the data source.
Table 148 – DataChangeNotification

	Name
	Type
	Description

	DataChangeNotification
	structure
	Data change Notification data

	
monitoredItems []
	MonitoredItem Notification
	The list of MonitoredItems for which a change has been detected.

	

clientHandle
	IntegerId
	Client-supplied handle for the MonitoredItem. The IntegerId type is defined in 7.13

	

value
	DataValue
	The StatusCode, value and timestamp(s) of the monitored Attribute depending on the sampling and queuing configuration.

If the StatusCode indicates an error then the value and timestamp(s) are to be ignored.

If not every detected change has been returned since the Server's queue buffer for the MonitoredItem reached its limit and had to purge out data, the Overflow bit in the DataValue InfoBits of the statusCode is set.

DataValue is a common type defined in 7.7.

	
diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information. The size and order of this list matches the size and order of the monitoredItem parameter. There is one entry in this list for each Node contained in the monitoredItem parameter. This list is empty if diagnostics information was not requested or is not available for any of the MonitoredItems. DiagnosticInfo is a common type defined in 7.8.

7.19.3 EventNotificationList parameter
Table 149 defines the NotificationData parameter used for EventNotifications.

The EventNotificationList defines a table structure that is used to return Event fields to a Client Subscription. The structure is in the form of a table consisting of one or more Events, each containing an array of one or more fields. The selection and order of the fields returned for each Event is identical to the selected parameter of the EventFilter.

Table 149 – EventNotificationList
	Name
	Type
	Description

	EventNotificationList
	structure
	Event Notification data

	
events []
	EventFieldList
	The list of Events being delivered

	

clientHandle
	IntegerId
	Client-supplied handle for the MonitoredItem. The IntegerId type is defined in 7.13

	

eventFields []
	BaseDataType
	List of selected Event fields. This shall be a one to one match with the fields selected in the EventFilter.
7.16.3 specifies how the Server shall deal with error conditions.

7.19.4 StatusChangeNotification parameter
Table 150 defines the NotificationData parameter used for a StatusChangeNotification.

The StatusChangeNotification informs the client about a change in the status of a Subscription.

Table 150 – StatusChangeNotification

	Name
	Type
	Description

	StatusChangeNotification
	structure
	Event Notification data

	
status
	StatusCode
	The StatusCode that indicates the status change.

	
diagnosticInfo
	DiagnosticInfo
	DiagnosticInformation for the status change

7.20 NotificationMessage

The components of this parameter are defined in Table 151.

Table 151 – NotificationMessage

	Name
	Type
	Description

	NotificationMessage
	structure
	The Message that contains one or more Notifications.

	
sequenceNumber
	Counter
	The sequence number of the NotificationMessage.

	
publishTime
	UtcTime
	The time that this Message was sent to the Client. If this Message is retransmitted to the Client, this parameter contains the time it was first transmitted to the Client.

	
notificationData []
	Extensible Parameter
NotificationData
	The list of NotificationData structures.
The NotificationData parameter type is an extensible parameter type specified in 7.19. It specifies the types of Notifications that can be sent. The ExtensibleParameter type is specified in 7.11.

Notifications of the same type should be grouped into one NotificationData element. If a Subscription contains MonitoredItems for events and data, this array should have not more than 2 elements. If the Subscription contains MonitoredItems only for data or only for events, the array size should always be one for this Subscription.

7.21 NumericRange

This parameter is defined in Table 152. A formal BNF definition of the numeric range can be found in Appendix A3.
The syntax for the string contains one of the following two constructs. The first construct is the string representation of an individual integer. For example, “6” is valid, but “6.0” and “3.2” are not. The minimum and maximum values that can be expressed are defined by the use of this parameter and not by this parameter type definition. The second construct is a range represented by two integers separated by the colon (“:”) character. The first integer shall always have a lower value than the second. For example, “5:7” is valid, while “7:5” and “5:5” are not. The minimum and maximum values that can be expressed by these integers are defined by the use of this parameter, and not by this parameter type definition. No other characters, including white-space characters, are permitted.
Multi-dimensional arrays can be indexed by specifying a range for each dimension separated by a ‘,’. For example, a 2x2 block in a 4x4 matrix could be selected with the range “1:2,0:1”. A single element in a multi-dimensional array can be selected by specifying a single number instead of a range. For example, “1,1” specifies selects the [1,1] element in a two dimensional array.

Dimensions are specified in the order that they appear in the ArrayDimensions Attribute. All dimensions shall be specified for a NumericRange to be valid.

All indexes start with 0. The maximum value for any index is one less than the length of the dimension.

When reading a value the indexes may not specify a range that is within the bounds of the array. The Server shall return a partial result if some elements exist within the range. The Server shall return a Bad_OutOfRange If no elements exist within the range.

When writing a value the size of the array shall match the size specified by the NumericRange. The Server shall return an error if it cannot write all elements specified by the Client.

The NumericRange can also be used to specify substrings for ByteString and String values. Arrays of ByteString and String values are treated as two dimensional arrays where the final index specifies the substring range within the ByteString or String value. The entire ByteString or String value is selected if the final index is omitted.

Table 152 – NumericRange

	Name
	Type
	Description

	NumericRange
	String
	A number or a numeric range.

A null string indicates that this parameter is not used.

7.22 QueryDataSet
The components of this parameter are defined in Table 153.

Table 153 – QueryDataSet
	Name
	Type
	Description

	QueryDataSet
	structure
	Data related to a Node returned in a Query response.

	
nodeId
	ExpandedNodeId
	The NodeId for this Node description.

	
typeDefinitionNode
	ExpandedNodeId
	The NodeId for the type definition for this Node description.

	
values[]
	BaseDataType
	Values for the selected Attributes. The order of returned items matches the order of the requested items. There is an entry for each requested item for the given TypeDefinitionNode that matches the selected instance, this includes any related nodes that were specified using a relative path from the selected instance’s TypeDefinitionNode. If no values where found for a given requested item a null value is return for that item. If multiple values exist for a requested item then an array of values is returned.
If the requested item is a reference then a ReferenceDescription or array of ReferenceDescriptions are returned for that item.

7.23 ReadValueId

The components of this parameter are defined in Table 154.

Table 154 – ReadValueId

	Name
	Type
	Description

	ReadValueId
	structure
	Identifier for an item to read or to monitor.

	
nodeId
	NodeId
	NodeId of a Node.

	
attributeId
	IntegerId
	Id of the Attribute. This shall be a valid Attribute id. The IntegerId is defined in 7.13. The IntegerIds for the Attributes are defined in Part 6.

	
indexRange
	NumericRange
	This parameter is used to identify a single element of an array, or a single range of indexes for arrays. If a range of elements is specified, the values are returned as a composite. The first element is identified by index 0 (zero). The NumericRange type is defined in 7.21.

This parameter is null if the specified Attribute is not an array. However, if the specified Attribute is an array, and this parameter is null, then all elements are to be included in the range.

	
dataEncoding
	QualifiedName
	This parameter specifies the BrowseName of the DataTypeEncoding that the Server should use when returning the Value Attribute of a Variable. It is an error to specify this parameter for other Attributes.

A Client can discover what DataTypeEncodings are available by following the HasEncoding Reference from the DataType Node for a Variable.

OPC UA defines BrowseNames which Servers shall recognize even if the DataType Nodes are not visible in the Server address space. These BrowseNames are:

DefaultBinary

The default or native binary (or non-XML) encoding.

DefaultXML

The default XML encoding.

Each DataType shall support at least one of these encodings. DataTypes that do not have a true binary encoding (e.g. they only have a non-XML text encoding) should use the DefaultBinary name to identify the encoding that is considered to be the default non-XML encoding. DataTypes that support at least one XML-based encoding shall identify one of the encodings as the DefaultXML encoding. Other standards bodies may define other well-known data encodings that could be supported.

If this parameter is not specified then the Server shall choose either the DefaultBinary or DefaultXML encoding according to what Message encoding (see Part 6) is used for the Session. If the Server does not support the encoding that matches the Message encoding then the Server shall choose the default encoding that it does support.

If this parameter is specified for a MonitoredItem, the Server shall set the StructureChanged bit in the StatusCode (see 7.33) if the DataTypeEncoding changes. The DataTypeEncoding changes if the DataTypeVersion of the DataTypeDescription or the DataTypeDictionary associated with the DataTypeEncoding changes.

7.24 ReferenceDescription

The components of this parameter are defined in Table 155.

Table 155 – ReferenceDescription

	Name
	Type
	Description

	ReferenceDescription
	structure
	Reference parameters returned for the Browse Service.

	
referenceTypeId
	NodeId
	NodeId of the ReferenceType that defines the Reference.

	
isForward
	Boolean
	If the value is TRUE, the Server followed a forward Reference. If the value is FALSE, the Server followed an inverse Reference.

	
nodeId
	Expanded

NodeId
	NodeId of the TargetNode as assigned by the Server identified by the Server index. The ExpandedNodeId type is defined in 7.10.

If the serverIndex indicates that the TargetNode is a remote Node, then the nodeId shall contain the absolute namespace URI. If the TargetNode is a local Node the nodeId shall contain the namespace index.

	
browseName1
	QualifiedName
	The BrowseName of the TargetNode.

	
displayName
	LocalizedText
	The DisplayName of the TargetNode.

	
nodeClass1
	NodeClass
	NodeClass of the TargetNode.

	
typeDefinition1
	Expanded

NodeId
	Type definition NodeId of the TargetNode. Type definitions are only available for the NodeClasses Object and Variable. For all other NodeClasses a null NodeId shall be returned.

	Notes:

1

If the Server index indicates that the TargetNode is a remote Node, then the TargetNode browseName, nodeClass and typeDefinition may be null or empty. If they are not, they might not be up to date because the local Server might not continuously monitor the remote Server for changes.

7.25 RelativePath
The components of this parameter are defined in Table 156.

Table 156 – RelativePath
	Name
	Type
	Description

	RelativePath
	structure
	Defines a sequence of References and BrowseNames to follow.

	
elements []
	RelativePath
Element
	A sequence of References and BrowseNames to follow.

Each element in the sequence is processed by finding the targets and then using those targets as the starting nodes for the next element. The targets of the final element are the target of the RelativePath.

	

referenceTypeId
	NodeId
	The type of reference to follow from the current node.

The current path can not be followed any further if the referenceTypeId is not available on the Node instance.

	

isInverse
	Boolean
	Indicates whether the inverse Reference should be followed. The inverse reference is followed if this value is TRUE.

	

includeSubtypes
	Boolean
	Indicates whether subtypes of the ReferenceType should be followed. Subtypes are included if this value is TRUE.

	

targetName
	QualifiedName
	The BrowseName of the target node.

The final element may have an empty targetName. In this situation all targets of the references identified by the referenceTypeId are the targets of the RelativePath.

The targetName shall be specified for all other elements.

The current path can not be followed any further if no targets with the specified BrowseName exist.

A RelativePath can be applied to any starting Node. The targets of the RelativePath are the set of Nodes that are found by sequentially following the elements in RelativePath.

A text format for the RelativePath can be found in Appendix A2. This format is used in examples that explain the Services that make use of the RelativePath structure.
7.26 RequestHeader

The components of this parameter are defined in Table 157.

Table 157 – RequestHeader

	Name
	Type
	Description

	RequestHeader
	structure
	Common parameters for all requests submitted on a Session.

	
authenticationToken
	Session

AuthenticationToken
	The secret Session identifier used to verify that the request is associated with the Session. The SessionAuthenticationToken type is defined in 7.29.

	
timestamp
	UtcTime
	The time the Client sent the request.

	
requestHandle
	IntegerId
	A requestHandle associated with the request. This client defined handle can be used to cancel the request. It is also returned in the response.

	
returnDiagnostics
	UInt32
	A bit mask that identifies the types of vendor-specific diagnostics to be returned in diagnosticInfo response parameters.

The value of this parameter may consist of zero, one or more of the following values. No value indicates that diagnostics are not to be returned.

Bit Value

Diagnostics to return

0x0000 0001
ServiceLevel / SymbolicId

0x0000 0002
ServiceLevel / LocalizedText

0x0000 0004
ServiceLevel / AdditionalInfo

0x0000 0008
ServiceLevel / Inner StatusCode

0x0000 0010
ServiceLevel / Inner Diagnostics

0x0000 0020
OperationLevel / SymbolicId

0x0000 0040
OperationLevel / LocalizedText

0x0000 0080
OperationLevel / AdditionalInfo

0x0000 0100
OperationLevel / Inner StatusCode

0x0000 0200
OperationLevel / Inner Diagnostics

Each of these values is composed of two components, level and type, as described below. If none are requested, as indicated by a 0 value, or if no diagnostic information was encountered in processing of the request, then diagnostics information is not returned.

Level:

ServiceLevel
return diagnostics in the diagnosticInfo of the Service.

OperationLevel
return diagnostics in the diagnosticInfo defined for individual operations requested in the Service.

Type::

SymbolicId
return a namespace-qualified, symbolic identifier for an error or condition. The maximum length of this identifier is 32 characters.

LocalizedText
return up to 256 bytes of localized text that describes the symbolic id.

AdditionalInfo
return a byte string that contains additional diagnostic information, such as a memory image. The format of this byte string is vendor-specific, and may depend on the type of error or condition encountered.

InnerStatusCode
return the inner StatusCode associated with the operation or Service.

InnerDiagnostics
return the inner diagnostic info associated with the operation or Service. The contents of the inner diagnostic info structure are determined by other bits in the mask. Note that setting this bit could cause multiple levels of nested diagnostic info structures to be returned.

	
auditEntryId
	String
	An identifier that identifies the Client’s security audit log entry associated with this request. An empty string value means that this parameter is not used.
The AuditEntryId typically contains who initiated the action and from where it was initiated. The AuditEventId is included in the AuditEvent to allow human readers to correlate an Event with the initiating action.
More details of the Audit mechanisms are defined in 6.2 and in Part 3.

	
timeoutHint
	UInt32
	This timeout in milliseconds is used in the Client side Communication Stack to set the timeout on a per-call base.

For a Server this timeout is only a hint and can be used to cancel long running operations to free resources. If the Server detects a timeout, he can cancel the operation by sending the Service result Bad_Timeout. The Server should wait at minimum the timeout after he received the request before cancelling the operation.

The value of 0 indicates no timeout.

	
additionalHeader
	Extensible Parameter
AdditionalHeader
	Reserved for future use.

Applications that do not understand the header should ignore it.

7.27 ResponseHeader

The components of this parameter are defined in Table 158.

Table 158 – ResponseHeader

	Name
	Type
	Description

	ResponseHeader
	structure
	Common parameters for all responses.

	
timestamp
	UtcTime
	The time the Server sent the response.

	
requestHandle
	IntegerId
	The requestHandle given by the Client to the request.

	
serviceResult
	StatusCode
	OPC UA-defined result of the Service invocation. The StatusCode type is defined in 7.33.

	
serviceDiagnostics
	DiagnosticInfo
	Diagnostic information for the Service invocation. This parameter is empty if diagnostics information was not requested in the request header. The DiagnosticInfo type is defined in 7.8.

	
stringTable []
	String
	There is one string in this list for each unique namespace, symbolic identifier, and localized text string contained in all of the diagnostics information parameters contained in the response (see 7.8). Each is identified within this table by its zero-based index.

	
additionalHeader
	Extensible Parameter
AdditionalHeader
	Reserved for future use.

Applications that do not understand the header should ignore it.

7.28 ServiceFault

The components of this parameter are defined in Table 159.

The ServiceFault parameter is returned instead of the Service response message when a service level error occurs. The requestHandle in the ResponseHeader should be set to what was provided in the RequestHeader even if these values were not valid. The level of diagnostics returned in the ResponseHeader is specified by the returnDiagnostics parameter in the RequestHeader.

The exact use of this parameter depends on the mappings defined in Part 6.

Table 159 – ServiceFault

	Name
	Type
	Description

	ServiceFault
	structure
	An error response sent when a service level error occurs.

	
responseHeader
	ResponseHeader
	Common response parameters (see 7.27 for ResponseHeader definition).

7.29 SessionAuthenticationToken

The SessionAuthenticationToken type is an opaque identifier that is used to identify requests associated with a particular Session. This identifier is used in conjunction with the SecureChannelId or Client Certificate to authenticate incoming messages. It is the secret form of the sessionId for internal use in the Client and Server Applications.
A Server returns a SessionAuthenticationToken in the CreateSession response. The Client then sends this value with every request which allows the Server to verify that the sender of the request is the same as the sender of the original CreateSession request.

For the purposes of this discussion, a Server consists of application (code) and a Communication Stack as shown in Figure 27. The security provided by the SessionAuthenticationToken depends on a trust relationship between the Server application and the Communication Stack. The Communication Stack shall be able to verify the sender of the message and it uses the SecureChannelId or the Client Certificate to identify the sender to the Server. In these cases, the SessionAuthenticationToken is a UInt32 identifier that allows the Server to distinguish between different Sessions created by the same sender.

[image: image27]
Figure 27 – Logical layers of a Server
In some cases, the application and the Communication Stack cannot exchange information at runtime which means the application will not have access to the SecureChannelId or the Certificate used to create the SecureChannel. In these cases the application shall create a random ByteString value that is at least 32 bytes long. This value shall be kept secret and shall always be exchanged over a SecureChannel with encryption enabled. The Administrator is responsible for ensuring that encryption is enabled. The Profiles in Part 7 may define additional requirements for a ByteString SessionAuthenticationToken.
Client and Server applications should be written to be independent of the SecureChannel implementation. Therefore, they should always treat the SessionAuthenticationToken as secret information even if it is not required when using some SecureChannel implementations.

Figure 28 illustrates the information exchanged between the Client, the Server and the Server Stack when the Client obtains a SessionAuthenticationToken. In this figure the GetSecureChannelInfo step represents an API that depends on the Communication Stack implementation.

[image: image28.emf]Client Server Stack Server

OpenSecureChannel

• Client Certificate

• SecureChannelId

CreateSession

• Client Certificate

OpenSecureChannel Response

GetSecureChannelInfo

• Endpoint Url

• Security Policy

• Security Mode

• Secure Channel Id

• Client Certificate

CreateSession Response

• SessionId

• AuthenticationToken

ActivateSession

• SessionId

• AuthenticationToken

GetSecureChannelInfo

• Secure Channel Id

• Client Certificate

ActivateSession Response

Figure 28 – Obtaining a SessionAuthenticationToken

The SessionAuthenticationToken is a subtype of the NodeId data type, however, it is never used to identify a Node in the address space. Servers may assign a value to the NamespaceIndex, however, its meaning is Server specific.
7.30 SignatureData

The components of this parameter are defined in Table 160.

Table 160 – SignatureData
	Name
	Type
	Description

	SignatureData
	structure
	Contains a digital signature created with a Certificate.

	
signature
	ByteString
	This is a signature generated with the private key associated with a Certificate.

	
algorithm
	String
	A string containing the URI of the algorithm.
The URI string values are defined as part of the security profiles specified in Part 7.

7.31 SignedSoftwareCertificate
A SignedSoftwareCertificate is a ByteString containing an encoded Certificate. The encoding of a SignedSoftwareCertificate depends on the security technology mapping and is defined completely in Part 6. Table 161 specifies the information that shall be contained in a SignedSoftwareCertificate.

Table 161 – SignedSoftwareCertificate
	Name
	Type
	Description

	SignedSoftwareCertificate
	structure
	A SoftwareCertificate with a signature created by Certifying Authority.

	
version
	String
	An identifier for the version of the Certificate encoding.

	
serialNumber
	ByteString
	A unique identifier for the Certificate assigned by the Issuer.

	
signatureAlgorithm
	String
	The algorithm used to sign the Certificate.

The syntax of this field depends on the Certificate encoding.

	
signature
	ByteString
	The signature created by the Issuer.

	
issuer
	Structure
	A name that identifies the Issuer Certificate used to create the signature.

	
validFrom
	UtcTime
	When the Certificate becomes valid.

	
validTo
	UtcTime
	When the Certificate expires.

	
subject
	Structure
	A name that identifies the product which the Certificate describes.

This field shall contain the productName and vendorName from the SoftwareCertificate.

	
subjectAltName[]
	Structure
	A list of alternate names for the product.

This list shall include the productUri specified in the SoftwareCertificate.

	
publicKey
	ByteString
	The public key associated with the Certificate.

	
keyUsage[]
	String
	Specifies how the Certificate key may be used.

SignedSoftwareCertificates may only be used for creating Digital Signatures and Non-Repudiation. The contents of this field depends on the Certificate encoding.

	
softwareCertificate
	ByteString
	The XML encoded form of the SoftwareCertificate stored as UTF8 text.
Part 6 describes the XML representation for the SoftwareCertificate.

7.32 SoftwareCertificate

The components of this parameter are defined in Table 162.

Table 162 – SoftwareCertificate

	Name
	Type
	Description

	SoftwareCertificate
	structure
	A Certificate describing a product.

	
productName
	String
	The name of the product that is certified. This field shall be specified.

	
productUri
	String
	A globally unique identifier for the product that is certified.

This field shall be specified.

	
vendorName
	String
	The name of the vendor responsible for the product. This field shall be specified.

	
vendorProductCertificate
	ByteString
	The DER encoded form of the X.509 Certificate which is assigned to the product by the vendor.
This field may be omitted.

	
softwareVersion
	String
	Software version. This field shall be specified.

	
buildNumber
	String
	Build number. This field shall be specified.

	
buildDate
	UtcTime
	Date and time of the build. This field shall be specified.

	
issuedBy
	String
	URI of the certifying authority. This field shall be specified.

	
issueDate
	UtcTime
	Specifies when the Certificate was issued by the certifying authority.

This field shall be specified.

	
supportedProfiles []
	structure
	List of supported Profiles

	

organizationUri
	String
	A URI that identifies the organization that defined the profile.

	

profileId
	String
	A string that identifies the Profile

	

complianceTool
	String
	A string that identifies the tool or certification method used for compliance testing.

	

complianceDate
	UtcTime
	Date and time of the compliance test.

	

complianceLevel
	enum

ComplianceLevel
	An enumeration that specifies the compliance level of the Profile. It has the following values :

UNTESTED_0

the profiled capability has not been tested successfully

PARTIAL_1

the profiled capability has been partially tested and has
passed critical tests, as defined by the certifying authority.

SELFTESTED_2
the profiled capability has been successfully tested using a
self-test system authorized by the certifying authority.

CERTIFIED_3

the profiled capability has been successfully tested by a
testing organisation authorized by the certifying authority.

	

unsupportedUnitIds[]
	String
	The identifiers for the optional conformance units that were not tested. See Part 7 for a detailed explanation.

7.33 StatusCode

A StatusCode in OPC UA is numerical value that is used to report the outcome of an operation performed by an OPC UA Server. This code may have associated diagnostic information that describes the status in more detail; however, the code by itself is intended to provide Client applications with enough information to make decisions on how to process the results of an OPC UA Service.

The StatusCode is a 32-bit unsigned integer. The top 16 bits represent the numeric value of the code that shall be used for detecting specific errors or conditions. The bottom 16 bits are bit flags that contain additional information but do not affect the meaning of the StatusCode.

All OPC UA Clients shall always check the StatusCode associated with a result before using it. Results that have an uncertain/warning status associated with them shall be used with care since these results might not be valid in all situations. Results with a bad/failed status shall never be used.

OPC UA Servers should return good/success StatusCodes if the operation completed normally and the result is always valid. Different StatusCode values can provide additional information to the Client.

OPC UA Servers should use uncertain/warning StatusCodes if they could not complete the operation in the manner requested by the Client, however, the operation did not fail entirely.

The exact bit assignments are shown in Table 163.

Table 163 – StatusCode Bit Assignments

	Field
	Bit Range
	Description

	Severity
	30:31
	Indicates whether the StatusCode represents a good, bad or uncertain condition. These bits have the following meanings:

Good Success

00

Indicates that the operation was successful and the associated results may be used.

Uncertain Warning

01

Indicates that the operation was partially successful and that associated results might not be suitable for some purposes.

Bad Failure

10

Indicates that the operation failed and any associated results cannot be used.

Reserved

11

Reserved for future use. All Clients should treat a StatusCode with this severity as “Bad”.

	Reserved
	29:28
	Reserved for future use. Shall always be zero.

	SubCode
	16:27
	The code is a numeric value assigned to represent different conditions. Each code has a symbolic name and a numeric value. All descriptions in the OPC UA specification refer to the symbolic name. Part 6 maps the symbolic names onto a numeric value.

	StructureChanged
	15:15
	Indicates that the structure of the associated data value has changed since the last Notification. Clients should not process the data value unless they re-read the metadata.

Servers shall set this bit if the DataTypeEncoding used for a Variable changes. 7.23 describes how the DataTypeEncoding is specified for a Variable.

The bit is also set if the data type Attribute of the Variable changes. A Variable with data type BaseDataType does not require the bit to be set when the data type changes.

Servers shall also set this bit if the ArrayDimensions or the ValueRank Attribute or the EnumStrings Property of the DataType of the Variable changes.

This bit is provided to warn Clients that parse complex data values that their parsing routines could fail because the serialized form of the data value has changed.

This bit has meaning only for StatusCodes returned as part of a data change Notification or the HistoryRead. StatusCodes used in other contexts shall always set this bit to zero.

	SemanticsChanged
	14:14
	Indicates that the semantics of the associated data value have changed. Clients should not process the data value until they re-read the metadata associated with the Variable.

Servers should set this bit if the metadata has changed in way that could cause application errors if the Client does not re-read the metadata. For example, a change to the engineering units could create problems if the Client uses the value to perform calculations.

Part 8 defines the conditions where a Server shall set this bit for a DA Variable. Other specifications may define additional conditions. A Server may define other conditions that cause this bit to be set.

This bit has meaning only for StatusCodes returned as part of a data change Notification or the HistoryRead. StatusCodes used in other contexts shall always set this bit to zero.

	Reserved
	12:13
	Reserved for future use. Shall always be zero.

	InfoType
	10:11
	The type of information contained in the info bits. These bits have the following meanings:

NotUsed

00

The info bits are not used and shall be set to zero.

DataValue

01

The StatusCode and its info bits are associated with a data value returned from the Server.

Reserved

1X

Reserved for future use. The info bits shall be ignored.

	InfoBits
	0:9
	Additional information bits that qualify the StatusCode.

The structure of these bits depends on the Info Type field.

Table 164 describes the structure of the InfoBits when the Info Type is set to DataValue (01).

Table 164 – DataValue InfoBits

	Info Type
	Bit Range
	Description

	LimitBits
	8:9
	The limit bits associated with the data value. The limits bits have the following meanings::

Limit

Bits

Description

None

00

The value is free to change.

Low

01

The value is at the lower limit for the data source.

High

10

The value is at the higher limit for the data source.

Constant

11

The value is constant and cannot change.

	Overflow
	7
	If this bit is set, not every detected change has been returned since the Server’s queue buffer for the MonitoredItem reached its limit and had to purge out data.

	Reserved
	5:6
	Reserved for future use. Shall always be zero.

	HistorianBits
	0:4
	These bits are set only when reading historical data. They indicate where the data value came from and provide information that affects how the Client uses the data value. The historian bits have the following meaning:

Raw

XXX00

A raw data value.

Calculated

XXX01

A data value which was calculated.

Interpolated

XXX10

A data value which was interpolated.

Reserved

XXX11

Undefined.

Partial

XX1XX

A data value which was calculated with an incomplete interval.

Extra Data

X1XXX

A raw data value that hides other data at the same timestamp.

Multi Value

1XXXX

Multiple values match the aggregate criteria (i.e. multiple minimum values at different timestamps within the same interval)

Part 11 describes how these bits are used in more detail.

Common StatusCodes
Table 165 defines the common StatusCodes for all Service results. Part 6 maps the symbolic names to a numeric value.

Table 165 – Common Service Result Codes

	Symbolic Id
	Description

	Good
	The operation was successful.

	Good_CompletesAsynchronously
	The processing will complete asynchronously.

	Good_SubscriptionTransferred
	The subscription was transferred to another session.

	
	

	Bad_CertificateHostNameInvalid

	The HostName used to connect to a Server does not match a HostName in the Certificate.

	Bad_CertificateIssuerRevocationUnknown
	It was not possible to determine if the Issuer Certificate has been revoked.

	Bad_CertificateIssuerUseNotAllowed
	The Issuer Certificate may not be used for the requested operation.

	Bad_CertificateIssuerTimeInvalid
	An Issuer Certificate has expired or is not yet valid.

	Bad_CertificateIssuerRevoked
	The Issuer Certificate has been revoked.

	Bad_CertificateInvalid
	The certificate provided as a parameter is not valid.

	Bad_CertificateRevocationUnknown
	It was not possible to determine if the Certificate has been revoked.

	Bad_CertificateRevoked
	The Certificate has been revoked.

	Bad_CertificateTimeInvalid
	The Certificate has expired or is not yet valid.

	Bad_CertificateUriInvalid
	The URI specified in the ApplicationDescription does not match the URI in the Certificate.

	Bad_CertificateUntrusted
	The Certificate is not trusted.

	Bad_CertificateUseNotAllowed
	The Certificate may not be used for the requested operation.

	Bad_CommunicationError
	A low level communication error occurred.

	Bad_DataTypeIdUnknown
	The extension object cannot be (de)serialized because the data type id is not recognized.

	Bad_DecodingError
	Decoding halted because of invalid data in the stream.

	Bad_EncodingError
	Encoding halted because of invalid data in the objects being serialized.

	Bad_EncodingLimitsExceeded
	The message encoding/decoding limits imposed by the stack have been exceeded.

	Bad_IdentityTokenInvalid
	The user identity token is not valid.

	Bad_IdentityTokenRejected
	The user identity token is valid but the server has rejected it.

	Bad_InternalError
	An internal error occurred as a result of a programming or configuration error.

	Bad_InvalidArgument
	One or more arguments are invalid.

Each service defines parameter-specific StatusCodes and these StatusCodes shall be used instead of this general error code. This error code shall be used only by the communication stack and in services where it is defined in the list of valid StatusCodes for the service.

	Bad_InvalidState
	The operation cannot be completed because the object is closed, uninitialized or in some other invalid state.

	Bad_InvalidTimestamp
	The timestamp is outside the range allowed by the server.

	Bad_NonceInvalid
	The nonce does appear to be not a random value or it is not the correct length.

	Bad_NothingToDo
	There was nothing to do because the client passed a list of operations with no elements.

	Bad_OutOfMemory
	Not enough memory to complete the operation.

	Bad_RequestCancelledByClient
	The request was cancelled by the client.

	Bad_RequestTooLarge
	The request message size exceeds limits set by the server.

	Bad_ResponseTooLarge
	The response message size exceeds limits set by the client.

	Bad_RequestHeaderInvalid
	The header for the request is missing or invalid.

	Bad_ResourceUnavailable
	An operating system resource is not available.

	Bad_SecureChannelIdInvalid
	The specified secure channel is not longer valid.

	Bad_SecurityChecksFailed
	An error occurred verifying security.

	Bad_ServerHalted
	The server has stopped and cannot process any requests.

	Bad_ServerNotConnected
	The operation could not complete because the client is not connected to the server.

	Bad_ServerUriInvalid
	The Server URI is not valid.

	Bad_ServiceUnsupported
	The server does not support the requested service.

	Bad_SessionIdInvalid
	The session id is not valid.

	Bad_SessionClosed
	The session was closed by the client.

	Bad_SessionNotActivated
	The session cannot be used because ActivateSession has not been called.

	Bad_Shutdown
	The operation was cancelled because the application is shutting down

	Bad_SubscriptionIdInvalid
	The subscription id is not valid.

	Bad_Timeout
	The operation timed out.

	Bad_TimestampsToReturnInvalid
	The timestamps to return parameter is invalid.

	Bad_TooManyOperations
	The request could not be processed because it specified too many operations.

	Bad_UnexpectedError
	An unexpected error occurred.

	Bad_UnknownResponse
	An unrecognized response was received from the server.

	Bad_UserAccessDenied
	User does not have permission to perform the requested operation.

	Bad_ViewIdUnknown
	The view id does not refer to a valid view Node.

	Bad_ViewTimestampInvalid
	The view timestamp is not available or not supported.

	Bad_ViewParameterMismatchInvalid
	The view parameters are not consistent with each other.

	Bad_ViewVersionInvalid
	The view version is not available or not supported.

Table 166 defines the common StatusCodes for all operation level results. Part 6 maps the symbolic names to a numeric value. The common Service result codes can be also contained in the operation level.

Table 166 – Common Operation Level Result Codes

	Symbolic Id
	Description

	Good_Clamped
	The value written was accepted but was clamped.

	Good_Overload
	Sampling has slowed down due to resource limitations.

	
	

	Uncertain
	The value is uncertain but no specific reason is known

	
	

	Bad
	The value is bad but no specific reason is known.

	Bad_AttributeIdInvalid
	The attribute is not supported for the specified node.

	Bad_BrowseDirectionInvalid
	The browse direction is not valid.

	Bad_BrowseNameInvalid
	The browse name is invalid.

	Bad_ContentFilterInvalid
	The content filter is not valid.

	Bad_ContinuationPointInvalid
	The continuation point provide is longer valid.

	Bad_DataEncodingInvalid
	The data encoding is invalid.

	Bad_DataEncodingUnsupported
	The server does not support the requested data encoding for the node.

	Bad_EventFilterInvalid
	The event filter is not valid.

	Bad_FilterNotAllowed
	 A monitoring filter cannot be used in combination with the attribute specified.

	Bad_FilterOperandInvalid
	The operand used in a content filter is not valid.

	Bad_HistoryOperationInvalid
	The history details parameter is not valid.

	Bad_HistoryOperationUnsupported
	The server does not support the requested operation.

	Bad_IndexRangeInvalid
	The syntax of the index range parameter is invalid.

	Bad_IndexRangeNoData
	No data exists within the range of indexes specified.

	Bad_MonitoredItemFilterInvalid
	The monitored item filter parameter is not valid.

	Bad_MonitoredItemFilterUnsupported
	The server does not support the requested monitored item filter.

	Bad_MonitoredItemIdInvalid
	The monitoring item id does not refer to a valid monitored item.

	Bad_MonitoringModeInvalid
	The monitoring mode is invalid.

	Bad_NoCommunication
	Communication with the data source is defined, but not established, and there is no last known value available.

This status/sub status is used for cached values before the first value is received.

	Bad_NoContinuationPoints
	The operation could not be processed because all continuation points have been allocated.

	Bad_NodeClassInvalid
	The node class is not valid.

	Bad_NodeIdInvalid
	The syntax of the node id is not valid.

	Bad_NodeIdUnknown
	The node id refers to a node that does not exist in the server address space.

	Bad_NoDeleteRights
	The Server will not allow the node to be deleted.

	Bad_NodeNotInView
	The nodeToBrowse is not part of the view.

	Bad_NotFound
	A requested item was not found or a search operation ended without success.

	Bad_NotImplemented
	Requested operation is not implemented.

	Bad_NotReadable
	The access level does not allow reading or subscribing to the Node.

	Bad_NotSupported
	The requested operation is not supported.

	Bad_NotWritable
	The access level does not allow writing to the Node.

	Bad_ObjectDeleted
	The object cannot be used because it has been deleted.

	Bad_OutOfRange
	The value was out of range.

	Bad_ReferenceTypeIdInvalid
	The reference type id does not refer to a valid reference type node.

	Bad_SourceNodeIdInvalid
	The source node id does not refer to a valid node.

	Bad_StructureMissing
	A mandadatory structured parameter was missing or null.

	Bad_TargetNodeIdInvalid
	The target node id does not refer to a valid node.

	Bad_TypeDefinitionInvalid
	The type definition node id does not reference an appropriate type node.

	Bad_TypeMismatch
	The value supplied for the attribute is not of the same type as the attribute's value.

	Bad_WaitingForInitialData
	Waiting for the server to obtain values from the underlying data source.
After creating a MonitoredItem, it may take some time for the server to actually obtain values for these items. In such cases the server can optionally send a Notification with this status prior to the Notification with the first valid value.

7.34 TimestampsToReturn

The TimestampsToReturn is an enumeration that specifies the Timestamp Attributes to be transmitted for MonitoredItems or Nodes in HistoryRead. The values of this parameter are defined in Table 167.

Table 167 – TimestampsToReturn Values

	Value
	Description

	SOURCE_0
	Return the source timestamp.

If used in HistoryRead the source timestamp is used to determine which historical data values are returned.

	SERVER_1
	Return the Server timestamp.

If used in HistoryRead the Server timestamp is used to determine which historical data values are returned.

	BOTH_2
	Return both the source and Server timestamps.

If used in HistoryRead the source timestamp is used to determine which historical data values are returned.

	NEITHER_3
	Return neither timestamp.

This is the default value for MonitoredItems if a Variable value is not being accessed.

For HistoryRead this is not a valid setting.

7.35 UserIdentityToken parameters

7.35.1 Overview

The UserIdentityToken structure used in the Server Service Set allows Clients to specify the identity of the user they are acting on behalf of. The exact mechanism used to identify users depends on the system configuration. The different types of identity tokens are based on the most common mechanisms that are used in systems today. Table 168 defines the current set of user identity tokens. The ExtensibleParamter type is defined in 7.11.
Table 168 – UserIdentityToken parameterTypeIds

	Symbolic Id
	Description

	AnonymousIdentityToken
	No user information is available.

	UserNameIdentityToken
	A user identified by user name and password.

	X509IdentityToken
	A user identified by an X509v3 Certificate.

	IssuedIdentityToken
	A user identified by a WS-SecurityToken.

The Client shall always prove possession of a UserIdentityToken when it passes it to the Server. Some tokens include a secret such as a password which the Server will accept as proof. In order to protect these secrets the Token shall be encrypted before it is passed to the Server. Other types of tokens allow the Client to create a signature with the secret associated with the Token. In these cases, the Client proves possession of a UserIdentityToken by appending the last ServerNonce to the ServerCertificate and uses the secret to produce a Signature which is passed to the Server.
Each UserIdentityToken allowed by an Endpoint shall have a UserTokenPolicy specified in the EndpointDescription. The UserTokenPolicy specifies what SecurityPolicy to use when encrypting or signing. If this SecurityPolicy is omitted then the Client uses the SecurityPolicy in the EndpointDescription. If the matching SecurityPolicy is set to None then no encryption or signature is required. It is recommended that Applications never set the SecurityPolicy to None for UserTokens that include a secret because these secrets could be used by an attacker to gain access to the system.

Table 169 describes how to serialize UserIdentityTokens before applying encryption.

Table 169 – UserIdentityToken Encrypted Token Format
	Name
	Type
	Description

	length
	Byte[4]
	The length of the encrypted data including the ServerNonce but excluding the length field.

This field is a 4 byte unsigned integer encoded with the least significant bytes appearing first.

	tokenData
	Byte[*]
	The token data.

	serverNonce
	Byte[*]
	The last ServerNonce returned by the server in the CreateSession or ActivateSession response.

7.35.2 AnonymousIdentityToken
The AnonymousIdentityToken is used to indicate that the Client has no user credentials.
Table 170 defines the AnonymousIdentityToken parameter.

Table 170 – AnonymousIdentityToken

	Name
	Type
	Description

	AnonymousIdentityToken
	structure
	An anonymous user identity.

	
policyId
	String
	An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.36.

7.35.3 UserNameIdentityToken

The UserNameIdentityToken is used to pass simple username/password credentials to the Server.
This token shall be encrypted if required by the SecurityPolicy. The Server should specify a SecurityPolicy for the UserTokenPolicy if the SecureChannel has a SecurityPolicy of None

If the token is encrypted password shall be converted to a UTF8 ByteString and then serialized as shown in Table 169.

The Server shall decrypt the password and verify the ServerNonce.

If the SecurityPolicy is None then the password only contains the UTF-8 encoded password.

Table 171 defines the UserNameIdentityToken parameter.

Table 171 – UserNameIdentityToken

	Name
	Type
	Description

	UserNameIdentityToken
	structure
	UserName value.

	
policyId
	String
	An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.36.

	
userName
	String
	A string that identifies the user.

	
password
	ByteString
	The password for the user.

This parameter shall be encrypted with the Server’s Certificate using the algorithm specified by the SecurityPolicy.

	
encryptionAlgorithm
	String
	A string containing the URI of the encryptionAlgorithm.
The URI string values are defined as part of the security profiles specified in Part 7.
This parameter is null if the password is not encrypted.

7.35.4 X509IdentityToken

The X509IdentiyToken is used to pass an X509v3 Certificate which is issued by the user.
This token shall always be accompanied by a signature if required by the SecurityPolicy. The Server should specify a SecurityPolicy for the UserTokenPolicy if the SecureChannel has a SecurityPolicy of None.
Table 172 defines the X509IdentityToken parameter.

Table 172 – X509IdentityToken

	Name
	Type
	Description

	X509IdentityToken
	structure
	X509v3 value.

	
policyId
	String
	An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.36.

	
certificateData
	ByteString
	The X509 Certificate in DER format.

7.35.5 IssuedIdentityToken
The IssuedIdentityToken is used to pass WS-Security compliant SecurityTokens to the Server.

WS-Security defines a number of token profiles that may be used to represent different types of SecurityTokens. For example, Kerberos and SAML tokens have WSS token profiles and shall be exchanged in OPC UA as XML Security Tokens.

The WSS X509 and UserName tokens should not be exchanged as XML security tokens. OPC UA applications should use the appropriate OPC UA identity tokens to pass the information contained in these types of WSS SecurityTokens.

These tokens may be encrypted or require a signature. Part 7 defines profiles that include user related secuity, they also include any requirements for encryption and signatures. Additional security profiles specify encryption and signature algorithms.
If the token is encrypted then the XML shall be converted to an UTF8 ByteString and then serialized as shown in Table 169.

The Server shall decrypt the tokenData and verify the ServerNonce.

If the SecurityPolicy is None or if the token only requires signing then the tokenData contains the UTF-8 encoded XML representation of the token.

Table 173 defines the IssuedIdentityToken parameter.

Table 173 – IssuedIdentityToken

	Name
	Type
	Description

	IssuedIdentityToken
	structure
	WSS value.

	
policyId
	String
	An identifier for the UserTokenPolicy that the token conforms to.

The UserTokenPolicy structure is defined in 7.36.

	
tokenData
	ByteString
	The XML representation of the token.
This parameter may be encrypted with the Server’s Certificate.

	
encryptionAlgorithm
	String
	A string containing the URI of the encryptionAlgorithm.
The URI string values are defined as part of the security profiles specified in Part 7.
This parameter is null if the token is not encrypted.

7.36 UserTokenPolicy

The components of this parameter are defined in Table 174.

Table 174 – UserTokenPolicy

	Name
	Type
	Description

	UserTokenPolicy
	structure
	Specifies a UserIdentityToken that a Server will accept.

	
policyId
	String
	An identifier for the UserTokenPolicy assigned by the Server.

The Client specifies this value when it constructs a UserIdentityToken that conforms to the policy.

This value is only unique within the context of a single Server.

	
tokenType
	Enum

UserIdentity TokenType
	The type of user identity token required.

This value is an enumeration with one of the following values:

ANONYMOUS_0

No token is required.

USERNAME_1

A username/password token.

CERTIFICATE_2

An X509v3 certificate token.

ISSUEDTOKEN_3
Any WS-Security defined token.

A tokenType of ANONYMOUS indicates that the Server does not require any user identification. In this case the Client application instance Certificate is used as the user identification.

	
issuedTokenType
	String
	This field may only be specified if TokenType is ISSUEDTOKEN.

A URI for the type of token.

Part 7 defines URIs for supported token types.

Vendors may specify their own token.

WS-Security tokens are sometimes identified by XML QualifiedNames. A URI for the token can be constructed by appending the name to namespace with a ‘:’ separator. The XML QualifiedName can be reconstructed by searching for the last ‘:’ delimiter.

	
issuerEndpointUrl
	String
	A optional URL for the token issuing service.

The meaning of this value depends on the issuedTokenType

	
securityPolicyUri
	String
	The security policy to use when encrypting or signing the UserToken when it is passed to the Server in the ActivateSession request. Section 7.35 describes how this parameter is used.

The security policy for the SecureChannel is used if this value is omitted.

7.37 ViewDescription

The components of this parameter are defined in Table 175.

Table 175 – ViewDescription
	Name
	Type
	Description

	ViewDescription
	structure
	Specifies a View.

	
viewId
	NodeId
	NodeId of the View to Query. A null value indicates the entire AddressSpace.

	
timestamp

	UtcTime
	The time date desired. The corresponding version is the one with the closest previous creation timestamp. Either the Timestamp or the viewVersion parameter may be set by a Client, but not both. If ViewVersion is set this parameter shall be null.

	
viewVersion
	UInt32
	The version number for the View desired. When Nodes are added to or removed from a View, the value of a View’s ViewVersion Property is updated. Either the Timestamp or the viewVersion parameter may be set by a Client, but not both. The ViewVersion Property is defined in Part 3. If timestamp is set this parameter shall be 0. The current view is used if timestamp is null and viewVersion is 0.

Appendix A (informative): BNF definitions

A.1 Overview over BNF

The BNF (Backus-Naur form) used in this Appendix uses `<´ and `>´ to mark symbols, `[´ and `]´ to identify optional pathes and `|´ to identify alternatives. The ‘(‘ and ‘)’ symbols are used it indicate sets.

A.2 BNF of RelativePath

A RelativePath is a structure that describes a sequence of References and Nodes to follow. This Appendix describes a text format for a RelativePath that can be used in documentation or in files used to store configuration information.

The components of a RelativePath text format are specified in Table 176.

Table 176 – RelativePath

	Symbol
	Meaning

	/
	The forward slash character indicates that the Server is to follow any subtype of HierarchicalReferences.

	.
	The period (dot) character indicates that the Server is to follow any subtype of a Aggregates ReferenceType.

	<[#!ns:]ReferenceType>
	A string delimited by the ‘<’ and ‘>’ symbols specifies the BrowseName of a ReferenceType to follow. By default, any References of the subtypes the ReferenceType are followed as well. A ‘#’ placed in front of the BrowseName indicates that subtypes should not be followed.

 A ‘!’ in front of the BrowseName is used to indicate that the inverse Reference should be followed.
The BrowseName may be qualified with a namespace index (indicated by a numeric prefix followed by a colon). This namespace index is used specify the namespace component of the BrowseName for the ReferenceType. If the namespace prefix is omitted then namespace index 0 is used.

	[ns:]BrowseName
	A string that follows a ‘/’, ‘.’ or ‘>’ symbol specifies the BrowseName of a target Node to return or follow. This BrowseName may be prefixed by its namespace index. If the namespace prefix is omitted then namespace index 0 is used.
Omitting the final BrowseName from a path is equivalent to a wildcard operation that matches all Nodes which are the target of the Reference specified by the path.

	&
	The & sign character is the escape character. It is used to specify reserved characters that appear within a BrowseName. A reserved character is escaped by inserting the ‘&’ in front of it. Examples of BrowseNames with escaped characters are:

Received browse path name
Resolves to

“&/Name_1”

“/Name_1”

“&.Name_2”

“.Name_2”

“&:Name_3”

“:Name_3”

“&&Name_4”

“&Name_4”

Table 177 provides examples of RelativePaths specified with the text format.

Table 177 – RelativePath Examples

	Browse Path
	Description

	“/2:Block&.Output”
	Follows any forward hierarchical Reference with target BrowseName = “2:Block.Output”.

	“/3:Truck.0:NodeVersion”
	Follows any forward hierarchical Reference with target BrowseName = “3:Truck” and from there a forward Aggregates Reference to a target with BrowseName “0:NodeVersion”.

	“<1:ConnectedTo>1:Boiler/1:HeatSensor”
	Follows any forward Reference with a BrowseName = ‘1:ConnectedTo’ and finds targets with BrowseName = ‘1:Boiler’. From there follows any hierarchical Reference and find targets with BrowseName = ‘1:HeatSensor’.

	“<1:ConnectedTo>1:Boiler/”
	Follows any forward Reference with a BrowseName = ‘1:ConnectedTo’ and finds targets with BrowseName = ‘1:Boiler’. From there it finds all targets of hierarchical References .

	“<0:HasChild>2:Wheel”
	Follows any forward Reference with a BrowseName = ‘HasChild’ and qualified with the default OPC UA namespace. Then find targets with BrowseName = ‘Wheel’ qualified with namespace index ‘2’.

	“<!HasChild>Truck”
	Follows any inverse Reference with a BrowseName = ‘HasChild’ (i.e. follows the HasParent Reference). Then find targets with BrowseName = ‘Truck’. In both cases, the namespace component of the BrowseName is assumed to be 0.

	“<0:HasChild>”
	Finds all targets of forward References with a BrowseName = ‘HasChild’ and qualified with the default OPC UA namespace.

The following BNF describes the syntax of the RelativePath text format.

<relative-path>
::= <reference-type> <browse-name> [relative-path]

<reference-type>
::= '/' | '.' | '<' ['#'] ['!'] <browse-name> '>'

<browse-name>
::= [<namespace-index> ':'] <name>

<namespace-index>
::= <digit> [<digit>]

<digit>

::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

<name>

::= (<name-char> | '&' <reserved-char>) [<name>]

<reserved-char>
::= '/' | '.' | '<' | '>' | ':' | '#' | '!' | '&'

<name-char>

::= All valid characters for a String (see Part 3) excluding reserved-chars.
A.3 BNF of NumericRange
The following BNF describes the syntax of the NumericRange parameter type.

<numeric-range>
::= <dimension> [',' <dimension>]
<dimension>

::= <index> [':' <index>]

<index>

::= <digit> [<digit>]

<digit>

::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Appendix B (informative): Content Filter and Query Examples

B.1 Simple ContentFilter examples

B.1.1 Overview

These examples provide fairly simple content filters. Filter similar to these examples may be used in processing events.

The following conventions apply to these examples with regard to how Attribute operands are used (for a definition of this operand see 7.4.4):

· AttributeOperand: Refers to a Node, an Attribute of a Node or the Value Attribute of a Property associated with a Node. In the examples character names of NodeIds are used instead of an actual nodeId, this also applies to Attribute Ids.

· The string representation of relative paths is used instead of the actual structure.

· The NamespaceIndex used in all examples is 12 (it could just as easily have been 4 or 23 or any value). For more information about NamespaceIndex see Part 3. The use of the NamespaceIndex illustrates that the information model being used in the examples is not a model defined by this Specification, but one created for the examples.
B.1.2 Example 1

For example the logic describe by ‘(((AType.A = 5) or InList(BType.B, 3,5,7)) and BaseObjectType.displayName LIKE “Main%”)’ would result in a logic tree as shown in Figure 29 and a ContentFilter as shown in Table 178. For this example to return anything AType and BType both must be sub types of BaseObjectType, or the resulting “And” operation would always be false.

[image: image29]
Figure 29 – Filter Logic Tree Example

Table 178 describes the elements, operators and operands used in the example.

Table 178 – ContentFilter Example

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	And
	ElementOperand = 1
	Element Operand = 4
	
	

	1
	Or
	ElementOperand = 2
	Element Operand = 3
	
	

	2
	Equals
	AttributeOperand = NodeId: AType, BrowsePath: “.12:A”,

AttributeId:value
	LiteralOperand = ‘5’
	
	

	3
	InList
	AttributeOperand = NodeId: BType, BrowsePath: “.12:B”,

AttributeId:value
	LiteralOperand = ‘3’
	LiteralOperand = ‘5’
	LiteralOperand = ‘7’

	4
	Like
	AttributeOperand = NodeId: BaseObjectType, BrowsePath: “.”, AttributeId: displayName
	LiteralOperand = “Main%”
	
	

B.1.3 Example 2

As another example a filter to select all SystemEvents (including derived types) that are contained in the Area1 View or the Area2 View would result in a logic tree as shown in Figure 30 and a ContentFilter as shown in Table 179.

Figure 30 – Filter Logic Tree Example

Table 179 describes the elements, operators and operands used in the example.

Table 179 – ContentFilter Example

	Element[]
	Operator
	Operand[0]
	Operand[1]

	0
	And
	ElementOperand = 1
	ElementOperand = 4

	1
	Or
	ElementOperand = 2
	ElementOperand = 3

	2
	InView
	AttributeOperand = NodeId: Area1, BrowsePath: “.”, AttributeId: NodeId
	

	3
	InView
	AttributeOperand = NodeId: Area2, BrowsePath: “.”, AttributeId: NodeId
	

	4
	OfType
	AttributeOperand = NodeId: SystemEventType, BrowsePath: “.”, AttributeId: NodeId”
	

B.2 Complex Examples of ContentFilters (Queries)

B.2.1 Overview
These query examples illustrate complex ContentFilters. The following conventions apply to these examples with regard to Attribute operands (for a definition of these operands see 7.4.4):

· AttributeOperand: Refers to a Node, an Attribute of a Node or the Value Attribute of a Property associated with a Node. In the examples character names of NodeIds are used instead of an actual nodeId, this also applies to Attribute Ids.

· The string representation of relative paths is used instead of the actual structure.
· The NamespaceIndex used in all examples is 12 (it could just as easily have been 4 or 23 or any value). For more information about NameSpacesIndex see Part 3. The use of the NamespaceIndex illustrates that the information model being used in the examples is not a model defined by this Specification, but one created for the examples.
B.2.2 Used type model
The following examples use the type model described below:
New Reference types:

“HasChild” derived from HierarchicalReference.

“HasAnimal” derived from HierarchicalReference.

“HasPet” derived from HasAnimal.

“HasFarmAnimal” derived from HasAnimal.

“HasSchedule” derived from HierarchicalReference.

PersonType derived from BaseObjectType adds

HasProperty "LastName"

HasProperty "FirstName"

HasProperty "StreetAddress""

HasProperty "City"

HasProperty "ZipCode"

May have HasChild reference to a node of type PersonType

May have HasAnimal reference to a node of type AnimalType (or a sub type of this Reference type)

AnimalType derived from BaseObjectType adds

May have HasSchedule reference to a node of type FeedingScheduleType

HasProperty "Name"

DogType derived from AnimalType adds

HasProperty "NickName"

HasProperty "DogBreed"

HasProperty "License"

CatType derived from AnimalType adds

HasProperty "NickName"

HasProperty "CatBreed"

PigType derived from AnimalType adds

HasProperty "PigBreed"

ScheduleType derived from BaseObjectType adds

HasProperty "Period"

FeedingScheduleType derived from ScheduleType adds

HasProperty "Food"

HasProperty "Amount"

AreaType derived from BaseObjectType is just a simple Folder and contains no Properties.
This example type system is shown in Figure 31. In this Figure, the OPC UA notation is used for all References to Object types, Properties and sub-types. Additionally supported References are contained in an inner box. The actual references only exist in the instances thus no connections to other Objects are shown in the Figure and they may be sub-types of the listed Reference.

[image: image30.emf]Types

BaseObjectType

BaseReferenceType

HierarchicalReferenceType

HasChild

HasSchedule

HasAnimal

HasFarmAnimal

HasPet

PersonType

AnimalType

ScheduleType

FeedingScheduleType

Food

Amount

Period

Name

CatType PigType DogType

Lastname

FirstName

StreetAddress

City

ZipCode

PigBreed

NickName

CatBreed

NickName

DogBreed

License

References

 HasChild

 HasAnimal

References

 HasSchedule

AreaType

Figure 31 – Example Type Nodes

A corresponding example set of instances is shown in Figure 32. These instances include a type Reference for Objects. Properties also have type References, but the References are omitted for simplicity. The name of the Object is provided in the box and a numeric instance NodeId in brackets. Defined Reference types use the OPC UA notation, custom Reference types are listed with a named Reference. For Properties, the BrowseName, NodeId, and Value are shown. The Nodes that are included in a View (View1) are enclosed in the colored box. Two Area nodes are included for grouping of the existing person nodes. All custom nodes are defined in namespace 12 which is not included in the Figure.

[image: image31.emf]View1

Types

JFamily1 (30)

JFamily2 (36)

HFamily1 (42)

HFamily2 (48)

HFamily3 (54)

PersonType

HasChild

HasChild

HasChild

Lastname (31)

Jones

FirstName (32)

John

City (34)

Jersey

Address (33)

319 2

nd

Ave

ZipCode (35)

02138

Instances

Cat2 (74) Dog1 (82)

Pig1 (91)

Cat1 (70)

Schedule1 (78) Schedule2 (87)

CatType

FeedingSchedule

Type

Name (71)

Rosemary

Nickname (72)

Rosie

CatBreed (73)

Tabby

Name (75)

Basil

Nickname (76)

Trouble

CatBreed (77)

Tabby

Name (83)

Oliver

Nickname (84)

Olie

DogBreed (85)

American Bull Dog

PigBreed (92)

Meat

Name (93)

Porker

License (86)

355403

Period (79)

Hourly

Food (80)

Purino

Amount (81)

25

Period (88)

Daily

Food (89)

ALPY

Amount (90)

100

Lastname (37)

Jones

FirstName (38)

Sophia

City (40)

Jersey

Address (39)

319 2

nd

Ave

ZipCode (41)

02138

Lastname (43)

Hervey

FirstName (44)

Paul

City (46)

Cleveland

Address (45)

49 Main st

ZipCode (47)

03854

DogType

PigType

HasPet

HasPet

Lastname (49)

Hervey

FirstName (50)

Paul (Jr.)

City (52)

Cleveland

Address (51)

49 Main st

ZipCode (53)

03854

Lastname (55)

Hervey

FirstName (56)

Sara

City (58)

Cleveland

Address (57

49 Main st

ZipCode (59)

03854

HasFarmAnimal

Area1 (94) Area2 (95)

HasPet

AreaType

Figure 32 - Example Instance Nodes

B.2.3 Example Notes
For all of the examples in 7.4.4, the type definition Node is listed in its symbolic form, in the actual call it would be the NodeId assigned to the Node. The AttributeId is also the symbolic name of the Attribute, in the actual call they would be translated to the IntegerId of the Attribute. Also in all of the examples the BrowseName is included in the result table for clarity, normally this would not be returned.

The examples assume namespace 12 is the namespace for all of the custom definitions described for the examples.

B.2.4 Example 1

This example requests a simple layered filter, a person has a pet and the pet has a schedule.
Example 1: Get PersonType.lastName, AnimalType.name, ScheduleType.period where the Person Has a Pet and that Pet Has a Schedule.

The NodeTypeDescription parameters used in the example are described in Table 180.
Table 180 – Example 1 NodeTypeDescription
	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.12:LastName”
	value
	N/A

	
	
	“<12:HasPet>12:AnimalType. 12:name”
	value
	N/A

	
	
	“<12:HasPet>12:AnimalType<12:HasSchedule> 12:Schedule. 12:period”
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 33.

[image: image32]

 SHAPE * MERGEFORMAT
Figure 33 - Example 1 Filter

Table 181 describes the ContentFilter elements, operators and operands used in the example.
Table 181 – Example 1 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	1
	RelatedTo
	AttributeOperand = Nodeid: PersonType,

BrowsePath “.”, AttributeId: NodeId
	ElementOperand = 2
	AttributeOperand = NodeId: HasPet, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	2
	RelatedTo
	AttributeOperand = NodeId: AnimalType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: ScheduleType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: HasSchedule, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand= ‘1’

Table 182 describes the QueryDataSet that results from this query if it were executed against the instances described in
Figure 32
.
Table 182 – Example 1 QueryDataSets
	NodeId
	TypeDefinition

NodeId
	RelativePath
	Value

	12:30 (JFamily1)
	PersonType
	“.12:lastName”
	Jones

	
	
	“<12:HasPet>12:AnimalType. 12:name”
	Rosemary

	
	
	
	Basil

	
	
	“<12:HasPet>12:AnimalType<12:HasSchedule> 12:Schedule.12:period”
	Hourly

	
	
	
	Hourly

	12:42(HFamily1)
	PersonType
	“.12:lastName”
	Hervey

	
	
	“<12:HasPet>12:AnimalType. 12:name”
	Olive

	
	
	“<12:HasPet>12:AnimalType<12:HasSchedule> 12:Schedule.12:period”
	Daily

The Value column is returned as an array for each Node description, where the order of the items in the array would correspond to the order of the items that were requested for the given Node Type. In Addition if a single Attribute has multiple values then it would be returned as an array within the larger array, for example in this table Rosemary and Basil would be returned in a array the .<hasPet>.AnimalType.name item. They are show as separate rows for ease of viewing.

[Note: that the relative path column and browse name (in parentheses in the NodeId column) are not in the QueryDataSet and are only shown here for clarity. The TypeDefinition NodeId would be an integer not the symbolic name that is included in the table].
B.2.5 Example 2

The second example illustrates receiving a list of disjoint Nodes and also illustrates that an array of results can be received.
Example 2: Get PersonType.lastName, AnimalType.name where a person has a child or (a pet is of type cat and has a feeding schedule).

The NodeTypeDescription parameters used in the example are described in Table 183.
Table 183 – Example 2 NodeTypeDescription
	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.12:LastName”
	value
	N/A

	AnimalType
	TRUE
	“.12:name”
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 34.

[image: image33]
Figure 34 – Example 2 Filter Logic Tree

Table 184 describes the elements, operators and operands used in the example. It is worth noting that a Cattype is a subtype of Animaltype.
Table 184 – Example 2 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	Or
	ElementOperand=1
	ElementOperand = 2
	
	

	1
	RelatedTo
	AttributeOperand = NodeId: PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: HasChild, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	2
	RelatedTo
	AttributeOperand = NodeId: CatType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: FeedingScheduleType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: HasSchedule, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

The results from this query would contain the QueryDataSets shown in Table 185.
Table 185 – Example 2 QueryDataSets
	NodeId
	TypeDefinition NodeId
	RelativePath
	Value

	12:30 (Jfamily1)
	Persontype
	. 12:lastName
	Jones

	12:42 (HFamily1)
	PersonType
	. 12:lastName
	Hervey

	12:48 (HFamily2)
	PersonType
	. 12:lastName
	Hervey

	12:70 (Cat1)
	CatType
	. 12:name
	Rosemary

	12:74 (Cat2)
	CatType
	. 12:name
	Basil

[Note: that the relative path column and browse name (in parentheses in the NodeId column) are not in the QueryDataSet and are only shown here for clarity. The TypeDefinitionNodeId would be a NodeId not the symbolic name that is included in the table].
B.2.6 Example 3

The third example provides a more complex Query in which the results are filtered on multiple criteria.
Example 3: Get PersonType.lastName, AnimalType.name, ScheduleType.period where a person has a pet and the animal has a feeding schedule and the person has a zipcode = ‘02138’ and the schedule.period is daily or hourly and Amount to feed is > 10.
Table 186 describes the NodeTypeDescription parameters used in the example.
Table 186 – Example 3 - NodeTypeDescriptions
	Type Definition Node
	Include

Subtypes
	RelativePath
	Attribute Id
	Index Range

	PersonType
	FALSE
	“12:PersonType.12:lastName”
	Value
	N/A

	
	
	“12:PersonType<12:HasPet>12:AnimalType. 12:name”
	Value
	N/A

	
	
	“12:PersonType<12:HasPet>12:AnimalType<12:HasSchedule> 12:FeedingSchedule.period”
	Value
	N/A

The corresponding ContentFilter is illustrated in Figure 35.

[image: image34]
35 Figure – Example 3 Filter Logic Tree

Table 187 describes the elements, operators and operands used in the example.
Table 187 – Example 3 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	And
	Element Operand= 1
	ElementOperand = 2
	
	

	1
	And
	ElementOperand = 3
	ElementOperand = 5
	
	

	2
	And
	ElementOperand = 3
	ElementOperand = 9
	
	

	3
	Or
	ElementOperand = 7
	ElementOperand = 8
	
	

	4
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	ElementOperand = 5
	AttributeOperand = NodeId: 12:HasPet, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	5
	RelatedTo
	AttributeOperand = Node: 12:AnilmalType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:FeedingScheduleType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasSchedule, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	6
	Equals
	AttributeOperand = NodeId: 12:PersonType BrowsePath “.”, AttributeId: zipcode
	LiteralOperand = ‘02138’
	
	

	7
	Equals
	AttributeOperand = NodeId: 12:PersonType

BrowsePath “12:HasPet>12:AnimalType<12:HasSchedule>12: FeedingSchedule”, AttributeId: Period
	LiteralOperand = ‘Daily’
	
	

	8
	Equals
	AttributeOperand = NodeId: 12:PersonType

BrowsePath “12:HasPet>12:AnimalType<12:HasSchedule>12: FeedingSchedule”, AttributeId: Period
	LiteralOperand = ‘Hourly’
	
	

	9
	Greater Than
	AttributeOperand = NodeId: 12:PersonType

BrowsePath “12:HasPet>12:AnimalType<12:HasSchedule>12: FeedingSchedule”, AttributeId: Amount
	ElementOperand = 10
	
	

	10
	Cast
	LiteralOperand = 10
	AttributeOperand = NodeId: String, BrowsePath “.”, AttributeId: NodeIdt
	
	

The results from this query would contain the QueryDataSets shown in Table 188.
Table 188 – Example 3 QueryDataSets
	NodeId
	TypeDefinition

NodeId
	RelativePath
	Value

	12:30 (JFamily1)
	PersonType
	“.12:lastName”
	Jones

	
	
	“<12:hasPet>12:PersonType. 12:name”
	Rosemary

	
	
	
	Basil

	
	
	 “<12:hasPet>12:AnimalType<12:hasSchedule>12:FeedingSchedule. 12:period”
	Hourly

	
	
	
	Hourly

[Note: that the relative path column and browse name (in parentheses in the NodeId column) are not in the QueryDataSet and are only shown here for clarity. The TypeDefinitionNodeId would be an integer not the symbolic name that is included in the table].
B.2.7 Example 4

The fourth example provides an illustration of the Hop parameter that is part of the RelatedTo Operator.
Example 4: Get PersonType.lastName where a person has a child who has a child who has a pet.
Table 189 describes the NodeTypeDescription parameters used in the example.
Table 189 – Example 4 NodeTypeDescription
	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.12:lastName”
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 36.

[image: image35]

 SHAPE * MERGEFORMAT
Figure 36 – Example 4 Filter Logic Tree

Table 190 describes the elements, operators and operands used in the example.
Table 190 – Example 4 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”,

AttributeId: NodeId
	Element Operand = 1
	AttributeOperand = NodeId: 12:HasChild, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘2’

	1
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”,

AttributeId: NodeId
	AttributeOperand = NodeId: 12:AnimalType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasPet, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

The results from this query would contain the QueryDataSets shown in Table 191. It is worth noting that the pig “Pig1” is referenced as a pet by Sara, but is referenced as a farm animal by Sara’s parent Paul.
Table 191 – Example 4 QueryDataSets
	NodeId
	TypeDefinition

NodeId
	RelativePath
	Value

	12:42 (HFamily1)
	PersonType
	“.12:lastName”
	Hervey

[Note: that the relative path column and browse name (in parentheses in the NodeId column) are not in the QueryDataSet and are only shown here for clarity. The TypeDefinitionNodeId would be an integer not the symbolic name that is included in the table].
B.2.8 Example 5

The fifth example provides an illustration of the use of alias.
Example 5: Get the last names of children that have the same first name as a parent of theirs
Table 192 describes the NodeTypeDescription parameters used in the example.
Table 192 – Example 5 NodeTypeDescription
	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“<12:HasChild>12:PersonType. 12:lastName”
	Value
	N/A

The corresponding ContentFilter is illustrated in Figure 37.

[image: image36]
Figure 37 – Example 5 Filter Logic Tree

In this example, one Reference to PersonType is aliased to “Parent” and another Reference to PersonType is aliased to “Child”. The value of Parent.firstName and Child.firstName are then compared. Table 193 describes the elements, operators and operands used in the example.
Table 193 – Example 5 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3}

	0
	And
	ElementOperand = 1
	ElementOperand = 2
	
	

	1
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId, Alias: “Parent”
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId, Alias: “Child”
	AttributeOperand = NodeId: 12:HasChild, AttributeId: NodeId
	LiteralOperand = “1”

	2
	Equals
	AttributeOperand =

NodeId: 12:PersonType, BrowsePath “.”, AttributeId: FirstName, Alias: “Parent”
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: firstName, Alias: “Child”
	
	

The results from this query would contain the QueryDataSets shown in Table 194.
Table 194 – Example 5 QueryDataSets
	NodeId
	TypeDefinition

NodeId
	RelativePath
	Value

	12:42 (HFamily1)
	PersonType
	“<12:HasChild>12:PersonType.12:lastName”
	Hervey

B.2.9 Example 6

The sixth example provides an illustration a different type of request, one in which the Client is interested in displaying part of the address space of the server. This request includes listing a Reference as something that is to be returned.
Example 6: Get PersonType.NodeId, AnimalType.NodeId, PersonType.HasChild Reference, PersonType.HasAnimal Reference where a person has a child who has a Animal.
Table 195 describes the NodeTypeDescription parameters used in the example.
Table 195 – Example 6 NodeTypeDescription
	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.12:NodeId”
	value
	N/A

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>12:AnimalType.NodeId
	value
	N/A

	
	
	<12:HasChild>
	value
	N/A

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 38.

[image: image37]

 SHAPE * MERGEFORMAT
Figure 38 – Example 6 Filter Logic Tree

Table 196 describes the elements, operators and operands used in the example.
Table 196 – Example 6 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	ElementOperand = 1
	AttributeOperand = Node: 12:HasChild, BrowsePath “.”,AttributeId:NodeId
	LiteralOperand = ‘1’

	1
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:AnimalType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasAnimal, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

The results from this query would contain the QueryDataSets shown in Table 197.
Table 197 – Example 6 QueryDataSets
	NodeId
	TypeDefinition

NodeId
	RelativePath
	Value

	12:42 (HFamily1)
	PersonType
	“.NodeId”
	12:42 (HFamily1)

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>

12:AnimalType.NodeId
	12:91 (Pig1)

	
	
	<12:HasChild>
	HasChild

ReferenceDescription

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>
	HasFarmAnimal

ReferenceDescription

	12:48 (HFamily2)
	PersonType
	“.NodeId”
	12:48 (HFamily2)

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>

12:AnimalType.NodeId
	12:91 (Pig1)

	
	
	<12:HasChild>
	HasChild

ReferenceDescription

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>
	HasPet

ReferenceDescription

[Note: that the relative path and browse name (in parentheses) is not in the QueryDataSet and is only shown here for clarity and the TypeDefinitionNodeId would be an integer not the symbolic name that is included in the table. The value field would in this case be the NodeId where it was requested, but for the example the browse name is provided in parentheses and in the case of Reference types on the browse name is provided. For the References listed in Table 197, the value would be a ReferenceDescription which are described in 7.24].

Table 198 provides an example of the same QueryDataSet as shown in Table 197 without any additional fields and minimal symbolic Ids. There is an entry for each requested Attribute, in the cases where an Attribute would return multiple entries the entries are separated by comas. If a structure is being returned then the structure is enclosed in square brackets. In the case of a ReferenceDescription the structure contains a structure and DisplayName and BrowseName are assumed to be the same and defined in Figure 32.

Table 198 – Example 6 QueryDataSets without Additional Information
	NodeId
	TypeDefinition

NodeId
	Value

	12:42
	PersonType
	12:42

	
	
	12:91

	
	
	[HasChild,TRUE,[48,HFamily2,HFamily2,PersonType]],

	
	
	[HasFarmAnimal,TRUE[91,Pig1,Pig1,PigType]

	12:48
	PersonType
	12:54

	
	
	12:91

	
	
	[HasChild,TRUE,[54,HFamily3,HFamily3,PersonType]]

	
	
	[HasPet, TRUE,[91,Pig1,Pig1,PigType]]

The PersonType, HasChild, PigType, HasPet, HasFarmAnimal identifiers used in the above table would be translated to actual ExpandedNodeIds.

B.2.10 Example 7

The seventh example provides an illustration a request in which a Client wants to display part of the address space based on a starting point that was obtained via browsing. This request includes listing References as something that is to be returned. In this case the Person Browsed to Area2 and wanted to Query for information below this starting point.

Example 7: Get PersonType.NodeId, AnimalType.NodeId, PersonType.HasChild Reference, PersonType.HasAnimal Reference where the person is in Area2 (Cleveland nodes) and the person has a child.

Table 199 describes the NodeTypeDescription parameters used in the example.

Table 199 – Example 7 NodeTypeDescription

	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.NodeId”
	value
	N/A

	
	
	<12:HasChild>
	value
	N/A

	
	
	<12:HasAnimal>NodeId
	value
	N/A

	
	
	<12:HasAnimal>
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 39. Note the Browse call would typically return a NodeId, thus the first filter is for the BaseObjectType with a NodeId of 95 where 95 is the NodeId associated with the Area2 node, all Nodes descend from BaseObjectType, and NodeId is a base Property so this filter will work for all Queries of this nature.

[image: image38]

 SHAPE * MERGEFORMAT
Figure 39 – Example 7 Filter Logic Tree

Table 200 describes the elements, operators and operands used in the example.

Table 200 – Example 7 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	RelatedTo
	AttributeOperand = NodeId: BaseObjectType, BrowsePath “.”, AttributeId: NodeId
	ElementOperand = 1
	AttributeOperand = Node:HierachicalReference, BrowsePath “.”, AttributeId:NodeId
	LiteralOperand = ‘1’

	1
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:PersonTyp, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasChild, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	2
	Equals
	AttributeOperand =

NodeId: BaseObjectType, BrowsePath “.”, AttributeId: NodeId,
	LiteralOperand = ‘95
	
	

The results from this Query would contain the QueryDataSets shown in Table 201.

Table 201 – Example 7 QueryDataSets

	NodeId
	TypeDefinition

NodeId
	RelativePath
	Value

	12:42 (HFamily1)
	PersonType
	“.NodeId”
	12:42 (HFamily1)

	
	
	<12:HasChild>
	HasChild ReferenceDescription

	
	
	<12:HasAnimal>12:AnimalType.NodeId
	NULL

	
	
	<12:HasAnimal>
	HasFarmAnimal ReferenceDescription

	12:48 (HFamily2)
	PersonType
	“.NodeId”
	12:48 (HFamily2)

	
	
	<12:HasChild>
	HasChild ReferenceDescription

	
	
	<12:HasAnimal>12:AnimalType.NodeId
	12:91 (Pig1)

	
	
	<12:HasAnimal>
	HasFarmAnimal ReferenceDescription

[Note: that the relative path and browse name (in parentheses) is not in the QueryDataSet and is only shown here for clarity and the TypeDefinitionNodeId would be an integer not the symbolic name that is included in the table. The value field would in this case be the NodeId where it was requested, but for the example the browse name is provided in parentheses and in the case of Reference types on the browse name is provided. For the References listed in Table 201, the value would be a ReferenceDescription which are described in 7.24].
B.2.11 Example 8

The eighth example provides an illustration of a request in which the address space is restricted by a Server defined View. This request is the same as in the second example which illustrates receiving a list of disjoint Nodes and also illustrates that an array of results can be received. It is important to note that all of the parameters and the contentFilter are the same, only the View description would be specified as “View1”
Example 8: Get PersonType.lastName, AnimalType.name where a person has a child or (a pet is of type cat and has a feeding schedule) limited by the address space in View1.

The NodeTypeDescription parameters used in the example are described in Table 202
Table 202 – Example 8 NodeTypeDescription

	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.12:LastName”
	value
	N/A

	AnimalType
	TRUE
	“.name”
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 40.

[image: image39]
Figure 40 – Example 8 Filter Logic Tree

Table 203 describes the elements, operators and operands used in the example. It is worth noting that a CatType is a subtype of AnimalType.

Table 203 – Example 8 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	Or
	ElementOperand=1
	ElementOperand = 2
	
	

	1
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasChild, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	2
	RelatedTo
	AttributeOperand = NodeId: 12:CatType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:FeedingScheduleType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasSchedule, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

The results from this query would contain the QueryDataSets shown in Table 204. If this is compared to the result set from example 2, the only difference is the omission of the Cat Nodes. These Nodes are not in the View and thus are not include in the result set
Table 204 – Example 8 QueryDataSets

	NodeId
	TypeDefinition NodeId
	RelativePath
	Value

	12:30 (Jfamily1)
	Persontype
	.12:LastName
	Jones

[Note: that the relative path column and browse name (in parentheses in the NodeId column) are not in the QueryDataSet and are only shown here for clarity. The TypeDefinitionNodeId would be an integer not the symbolic name that is included in the table].
B.2.12 Example 9

The ninth example provides a further illustration for a request in which the address space is restricted by a Server defined View. This request is similar to the second example except that some of the requested nodes are expressed in terms of a relative path. It is important to note that the contentFilter is the same, only the View description would be specified as “View1”.
Example 9: Get PersonType.lastName, AnimalType.name where a person has a child or (a pet is of type cat and has a feeding schedule) limited by the address space in View1.

Table 205 describes the NodeTypeDescription parameters used in the example.

Table 205 – Example 9 NodeTypeDescription

	Type Definition Node
	Include

Subtypes
	Relative Path
	Attribute Id
	Index Range

	PersonType
	FALSE
	“.NodeId”
	value
	N/A

	
	
	<12:HasChild>12:PersonType<12:HasAnimal>12:AnimalType.NodeId
	value
	N/A

	
	
	<12:HasChild>
	value
	N/A

	
	
	<12:HasChild>12:PersonType
<12:HasAnimal>
	value
	N/A

	PersonType
	FALSE
	“.12:LastName”
	value
	N/A

	
	
	<12:HasAnimal>12:AnimalType. 12:Name
	value
	N/A

	AnimalType
	TRUE
	“.12:name”
	value
	N/A

The corresponding ContentFilter is illustrated in Figure 41.

[image: image40]
Figure 41 – Example 9 Filter Logic Tree

Table 206 describes the elements, operators and operands used in the example.

Table 206 – Example 9 ContentFilter

	Element[]
	Operator
	Operand[0]
	Operand[1]
	Operand[2]
	Operand[3]

	0
	Or
	ElementOperand=1
	ElementOperand = 2
	
	

	1
	RelatedTo
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:PersonType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasChild, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

	2
	RelatedTo
	AttributeOperand = NodeId: 12:CatType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:FeedingScheduleType, BrowsePath “.”, AttributeId: NodeId
	AttributeOperand = NodeId: 12:HasSchedule, BrowsePath “.”, AttributeId: NodeId
	LiteralOperand = ‘1’

The results from this Query would contain the QueryDataSets shown in Table 207. If this is compared to the result set from example 2, the Pet Nodes are included in the list, even though they are outside of the View. This is possible since the name referenced via the relative path and the root Node is in the View.
Table 207 – Example 9 QueryDataSets

	NodeId
	TypeDefinition NodeId
	RelativePath
	Value

	12:30 (Jfamily1)
	Persontype
	. 12:LastName
	Jones

	
	
	<12:HasAnimal>12:AnimalType. 12:Name
	Rosemary

	
	
	<12:HasAnimal>12:AnimalType. 12:Name
	Basil

[Note: that the relative path column and browse name (in parentheses in the NodeId column) are not in the QueryDataSet and are only shown here for clarity. The TypeDefinitionNodeId would be an integer not the symbolic name that is included in the table].

RelatedTo

HasSchedule

or

Literal Element

Operator Element

Attribute or Property

Element

FeedingSchedule

PersonType

CatType

HasChild

PersonType

RelatedTo

RelatedTo

HasSchedule

or

Literal Element

Operator Element

Attribute or Property

Element

FeedingSchedule

PersonType

CatType

HasChild

PersonType

RelatedTo

95

BaseObjectType NodeId

=

Literal Element

Operator Element

Attribute or Property

Element

HasAnimal

AnimalType

PersonType

HierarchicalReferenceType

RelatedTo

RelatedTo

Literal Element

Operator Element

Attribute or Property

Element

HasAnimal

AnimalType

PersonType

HasChild

PersonType

RelatedTo

RelatedTo

Literal Element

Operator Element

Attribute or Property

Element

PersonType

firstName

“Child”

PersonType

firstName

“Parent”

PersonType

“Child”

Equals

HasChild

PersonType

“Parent”

And

RelatedTo

Literal Element

Operator Element

Attribute or Property

Element

HasPet

AnimalType

PersonType

HasChild

 (two Hops)

PersonType

RelatedTo

RelatedTo

10

Schedule.Amount

>

And

Literal Element

Operator Element

Attribute or Property

Element

And

Daily

hourly

Schedule.period

Schedule.period

=

=

or

And

02138

PersonType.zipcode

=

HasSchedule

FeedingScheduleType

AnimalType

HasPet

PersonType

RelatedTo

RelatedTo

RelatedTo

HasSchedule

or

Literal Element

Operator Element

Attribute or Property

Element

FeedingSchedule

PersonType

CatType

HasChild

PersonType

RelatedTo

Literal Element

Operator Element

Attribute Element

ScheduleType

HasSchedule

AnimalType

HasPet

PersonType

ReleatedTo

RelatedTo

Literal Element

Operator Element

Attribute Element

InView

InView

or

SystemEventType

OfType

Area2

Area1

and

Literal Element

Operator Element

Attribute Element

AType

or

7

5

3

BType

InList

BaseObjectType

Main

LIKE

and

=

5

Server

Communication Stack

Application

�

Format needs to be updated

_1231582184.ppt

Client

Server

Certificate Authority

1. CreateSession Request

7. ActivateSession Response

		 Client instance certificate

		 Client nonce

2. Validate Client Certificate

6. Validate User Identity Token

Authentication Service

3. CreateSession Response

		 Server instance certificate

		 Server certificate signature

		 Server software certificates

		 Server nonce

4. Validate Server Certificate

5. ActivateSession Request

		 Client software certificates

		 Client certificate signature

		 User identity token

		 User identity token signature

		 Server nonce

_1263146185.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Session

Endpoint

Gateway

Server

Discovery

Endpoint

CreateSession()

CreateSession()

Session

Endpoint

CreateSecureChannel()

_1263995911.doc

 Variables

Object

 Attributes

Attribute

services

 Attributes

OPC UA AddressSpace

Other Node Types

OPC UA Server

 Attributes

_1264185278.ppt

Administrator

Discovery

Server

Server

Install()

RegisterServer(Offline)

Start()

Stop()

RegisterServer(Online)

RegisterServer(Online)

RegisterServer(Offline)

The Server must create a SecureChannel before calling RegisterServer

_1264185244.ppt

Administrator

Discovery

Server

Server

Install()

RegisterServer(Online)

Connect()

Disconnect()

RegisterServer(Online)

RegisterServer(Online)

Client

The Server must create a SecureChannel before calling RegisterServer

_1263848976.doc

1..N

 f

0..N

0..N

cc

Filters are used to select samples or events to report

 f

 f

0..N

1

0..N

Reporting may be enabled or disabled for the subscription.

The monitoring mode defines whether sampling and reporting of notifications is enabled or disabled

Queue attributes describe the queueing of notifications to a subscription

Node

A monitored item may monitor an attribute, a value, or a node providing events

Subscription

The sampling interval defines the cyclic rate used by the server to sample the real item.

Monitored Item

Monitored Item

Monitored Item

Variable

Attribute

_1253153876.ppt

Application

Administrator

Certificate Authority

1. Installs application

3. Requests certificate.

2. Creates a self-signed certificate.

		 Machine network name or address.

		 Organization name.

		 Machine network name or address.

		 Application name.

		 Organization name.

		 Proof of identity as administrator.

4. Issues certificate.

		 Public key.

		 CA digital signature.

		 Private key (must be protected).

5. Installs certificate.

		 Application certificate with public key.

		 Private key (must be protected).

Process completes here if a self-signed certificate meets the security requirements

_1255306864.ppt

Vendor

Tester

Certifying Authority

1. Provides application

3b. Requests certificate.

2. Conducts tests.

		 List of supported profiles.

		 Vendor name.

		 Product Name and URI

		 Software version and build number.

		 Vendor product certificate

		 List of supported profiles.

		 Vendor name.

		 Product Name and URI

		 Software version and build number.

		 Vendor product certificate.

		 Test results.

		 Proof of identity as tester.

4. Issues certificate.

		 Public key.

		 CA digital signature.

3a. Application fails tests.

		 Test results.

5. Distributes certificates

		 Build into application installer.

_1257108436.ppt

Client

Server Stack

Server

OpenSecureChannel

		 Client Certificate

		 SecureChannelId

CreateSession

		 Client Certificate

OpenSecureChannel Response

GetSecureChannelInfo

		 Endpoint Url

		 Security Policy

		 Security Mode

		 Secure Channel Id

		 Client Certificate

CreateSession Response

		 SessionId

		 AuthenticationToken

ActivateSession

		 SessionId

		 AuthenticationToken

GetSecureChannelInfo

		 Secure Channel Id

		 Client Certificate

ActivateSession Response

_1245181520.ppt

		 Check Instance Certificate.

		 Check Issuer Certificate.

4. Find Certificate Revocation List(s)

Administrator

Application

Certificate Store

1. Configures application

		 Certificate validation policies.

		 Location of CA certificates.

		 Location of Certificate Revocation List.

		 Location of Certificate Trust List.

		 Validates Issuer Certificate.

		 Validates Certificates in Trust Chain.

		 Validates Instance Certificate.

6. Accept Instance Certificate.

3. Find Issuer Certificate

Remote

Application

2. Provides Instance Certificate

		 Find Instance Certificate

or

		 Find Issuer Certificate

or

		 Find any Certificate in Trust Chain.

5. Find Certificate Trust List

_1231887297.ppt

Client

Server

1. ActivateSession Request

		 Client certificate signature

		 User identity token

		 User identity token signature

2. Validate User Identity Token

Authentication Service

3. ActivateSession Response

		 Server nonce

_1210682280.doc

Query

services

OPC UA Server

Node

Node

View

Node

View

services

OPC UA AddressSpace

Node

Node

Node

Node

Node

Node

_1227347779.ppt

GetEndpoints()

CreateSecureChannel()

Client

Server

EndpointDescription[]

Discovery

Endpoint

Session

Endpoint

Discovery

Server

FindServers()

ServerDescription[]

RegisterServer()

Discovery

Endpoint

Registration

Endpoint

_1231080345.ppt

Client

Server

Certificate Authority

1. GetEndpoints Request

		 CA Signature

		 Issue and expiry date

		 CA revocation list.

2. GetEndpoints Response

		 Server certificate

		 Message security mode

		 Security policy

		 User identity token policies

4. OpenSecureChannel Request

		 Client certificate

		 Client nonce

		 Signed with client’s private key

		 Encrypted with server’s public key

3. Validate Server Certificate

		 CA Signature

		 Issue and expiry date

		 CA revocation list.

5. Validate Client Certificate

6. OpenSecureChannel Response

		 Server nonce

		 Security token

		 Token lifetime

		 Signed with server’s private key

		 Encrypted with client’s public key

7. Renew Security Token

		 Not required if client is preconfigured with knowledge of server policies.

_1213595635.doc

Communication Stack

SecureChannel

OPC UA Client

Session

OPC UA Application

Communication Stack

OPC UA Application

OPC UA Server

_1226837407.vsd
Object�

Reference
/ InverseName (optional)�

�

ReferenceType�

Variable�

Variable:VariableType�

Attribute
NodeId = 123
Description = �Something��

Property
MyProperty = 123
NodeVersion = 1
�

Object:ObjectType�

Attribute
NodeId = 123
Description = �Something��

Property
MyProperty = 123
NodeVersion = 1
�

ObjectType�

Object�

ObjectType�

Symmetric
Reference�

Asymmetric
Reference�

ReferenceType�

VariableType�

Variable�

JFamily1 (30)�

JFamily2 (36)�

HFamily1 (42)�

Instances�

HFamily2 (48)�

HFamily3 (54)�

Types�

Cat2 (74)�

Dog1 (82)�

Pig1 (91)�

PersonType�

HasChild�

HasChild�

HasChild�

Lastname (31)
Jones �

FirstName (32)
John �

City (34)
Jersey �

Address (33)
319 2nd Ave �

Cat1 (70)�

ZipCode (35)
02138 �

Schedule1 (78)�

Schedule2 (87)�

CatType�

FeedingScheduleType�

Name (71)
Rosemary �

Nickname (72)
Rosie �

CatBreed (73)
Tabby �

Name (75)
Basil �

Nickname (76)
Trouble �

CatBreed (77)
Tabby �

Name (83)
Oliver �

Nickname (84)
Olie �

DogBreed (85)
American Bull Dog �

PigBreed (92)
Meat �

Name (93)
Porker �

License (86)
355403 �

Period (79)
Hourly �

Food (80)
Purino �

Amount (81)
25 �

Period (88)
Daily �

Food (89)
ALPY �

Amount (90)
100 �

Lastname (37)
Jones �

FirstName (38)
Sophia �

City (40)
Jersey �

Address (39)
319 2nd Ave �

ZipCode (41)
02138 �

Lastname (43)
Hervey �

FirstName (44)
Paul �

City (46)
Cleveland �

Address (45)
49 Main st �

ZipCode (47)
03854 �

HasPet�

�

DogType�

PigType�

HasPet�

Lastname (49)
Hervey �

FirstName (50)
Paul (Jr.)�

City (52)
Cleveland �

Address (51)
49 Main st �

ZipCode (53)
03854 �

Lastname (55)
Hervey �

FirstName (56)
Sara �

City (58)
Cleveland �

Address (57
49 Main st �

ZipCode (59)
03854 �

HasPet�

HasFarmAnimal�

View1�

Area1 (94)�

Area2 (95)�

�

AreaType�

_1227302129.doc

Server

Server Description

Endpoint Description

Discovery Services

_1226836937.vsd
Object�

Reference
/ InverseName (optional)�

�

ReferenceType�

Variable�

Variable:VariableType�

Attribute
NodeId = 123
Description = �Something��

Property
MyProperty = 123
NodeVersion = 1
�

Object:ObjectType�

Attribute
NodeId = 123
Description = �Something��

Property
MyProperty = 123
NodeVersion = 1
�

ObjectType�

Object�

ObjectType�

Symmetric
Reference�

Asymmetric
Reference�

ReferenceType�

VariableType�

BaseObjectType�

HierarchicalReferenceType�

HasChild�

BaseReferenceType�

HasSchedule�

HasAnimal�

HasFarmAnimal�

HasPet�

PersonType�

AnimalType�

ScheduleType�

FeedingScheduleType�

Food�

Amount�

Period�

Types�

Name�

CatType�

PigType�

DogType�

Lastname�

FirstName�

StreetAddress�

City�

ZipCode�

PigBreed�

NickName�

CatBreed�

NickName�

DogBreed�

License�

References
 HasChild
 HasAnimal�

References
 HasSchedule�

AreaType�

_1213451192.doc

1..N

0..N

Monitored Item

0..N

cc

Items to Report are monitored items whose notifications are sent when the triggering item triggers. Their lifetime is independent of the lifetime of the triggered items that reference them.

0..N

1

0..N

Triggering item defines a set of triggered items

Monitored Item

Monitored Item

Monitored Item

Triggering links link the triggering item with items to report. These links are defined for the triggering item and are deleted when the triggering item is deleted.

_1210693613.doc

Server 1

Server

 proxy

Server 2

Client 2

Client

 proxy

Client 1

_1204061650.doc

Server

Security Policy

Security Token

SecureChannel services

_1204610013.doc

OPC UA AddressSpace

Subscription� services

OPC UA Server

MonitoredItem� services

Monitored

Item

Node

Subscription

Attributes

Events

_1210665791.doc

Server 1 (active)

Client and process info

Client and process info

Server 2 (backup)

Transparent Server

Client

_1210495069.doc

Server 1 (active)

Client and process info

Client and process info

Server 2 (backup)

Client

_1204142527.doc

OPC UA Server

Node

Node

Node

NodeManagement services

OPC UA AddressSpace

Node

Node

Node

Node

Node

Node

_1194990736.doc

 Variables

Object Node

Call

service

OPC UA Address Space

OPC UA Server

 Methods

 	___()

	___()

_1203856499.doc

Server

Session

Session

 services

_1204054100.doc

Update Cycle of underlying system (every 15 seconds)

Actual change occurs at “12”

Change detected via sampling at ”28”.

Sampling (every 10 seconds)

40

30

20

10

0

Time axis

(seconds)

_1177918207.doc

OPC UA Server

1..N

0..N

0..N

cc

0..N

1

0..N

The aggregating server establishes a separate session to its underlying servers for each of its users.

Clients typically support a single system user

Aggregating OPC UA Server

Sessions

OPC UA Client

OPC UA Client

OPC UA Client

OPC UA Server

